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Executive Summary  

We analyzed mobility data from UberMedia for two geographic areas (“Chautauqua” and 

“Bobolink”) over 20-months (Jan 2020 – Aug 2021); the dataset included 2,975,539 geographic 

“pings”. Our results are grouped into four areas: (1) Correlations: The number of devices per day 

were significantly related to daily visits (P < 0.001; r = 0.59 for Bobolink; r = 0.85 Chautauqua). 

However, the noise around the fit was substantial and concerning. More worrisome was the 

drastic change-in-over time in the amount of UberMedia data, which would be confounded with 

any “real” signal in increasing visitation. (2) Along-trail travel (heat map): Patterns of visitation 

along trails matched our expectations, both in space and time. For example, visitation was busier 

on the Chautauqua trail and the Royal Arch trail than surrounding trails, and visitation was 

higher in summer months than winter months. (3) Visitor origin: The percentage of “local” 

devices at Bobolink was 76%, versus 39% at Chautauqua, matching expectations of relatively 

lower rates of tourism at Bobolink. (4) Off-trail travel: Within Chautauqua, three possible hot 

spots of off-trail travel were identified. Moreover, some known undesignated trails were 

observable in the heat map. While our investigations of on-trail travel, device origin, and off-trail 

travel revealed patterns that made sense to us, we lacked the ability to correlate these patterns 

with known estimates, and thus have little confidence in using this information to guide any 

management choices. Further research and development (more sites, more time series, more 

calibration) is required before tapping this data to produce a credible, production-level source of 

information about mobility data (i.e., a “visitor” explorer tool).  
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Abstract  

There is a critical need for data on visitation attributes to manage outdoor recreation but 

collecting data on the recreational use of parks is resource intensive and hence spatial and 

temporally limited. Here, we processed mobility data from UberMedia for two geographic areas 

(“Chautauqua” and “Bobolink”) over 20-months (Jan 2020 – Aug 2021); the dataset included 

2,975,539 geographic “pings”. After a significant amount of processing, we were able to show 

that the mobile data: (1) describe day-to-day visitation levels, but not perfectly (r = 0.59 for 

Bobolink; r = 0.85 for Chautauqua); (2) map relative visitation levels among and along trails 

(i.e., heatmap), not just at access points; (3) show differences in which trails locals and non-

locals visit (Percentage of visitors that lived w/in 22 miles of the trailhead was 76% and 39% for 

Bobolink and Chautauqua, respectively); and (4) locate off trail travel, albeit in a very limited 

way. We also found some major limitations: (1) the data were too sparse to examine visitation at 

a particular hour at a specific spot, meaning the data cannot reveal real-time patterns, and (2) 

year-over-year differences in ping density were large, reflecting changes in cell phone operating 

systems over time, and likely confounding any real “signal” of annual changes in visitation, and 

(3) the data could not easily separate use types (e.g., hiking vs. biking), without differentiating by 

speed of travel. Given these limitations, we suggest that further research and development (more 

sites, more time series, more calibration) is required before moving this data forward into a 

credible, production-level mobility data explorer. Meanwhile, Strava Metro introduced a new 

dashboard tool that, despite its own limitations, may be the more cost-effective direction for 

OSMP staff than UberMedia. 

Keywords: Visitation, big data, mobility data, heat map, outdoor recreation 



4 
 

Introduction 

Outdoor recreation is increasing in Colorado. For example, visitation to Rocky Mountain 

National Park increased from 2.9 to 4.4 million visits over the last 20 years. Municipal open 

space systems have experienced even greater increases in visitation, due to their proximity to 

neighborhoods. For example, recreational visits to the City of Boulder Open Space and Mountain 

Parks (OSMP) lands increased from 3 to 6.25 mission visits over the last 20 years. The trend of 

increasing visitation has many benefits. Outdoor recreation promotes visitors’ mental and 

physical health (Outdoor Rx Collaborative), provides economic benefits in the hundreds of 

billions of dollars each year (BEA; Neher 2013; SCORP), and contributes to an ethic of nature 

appreciation and a community’s quality of life (National Geographic). But, increasing outdoor 

recreation stresses systems that were designed for far fewer visitors. Moreover, increased trail 

use can facilitate the movement of weeds and pests, cause erosion, damage vegetation, impact 

water quality, and displace wildlife.  

There is a critical need for data on visitation attributes. Moreover, increasing visitation 

affects areas across a landscape very differently, with some sites being more crowded than 

others, some sites attracting more tourists or residents than others, and some sites favoring more 

“nature play” than others. Basic visitation information is the foundation for reliable social and 

resource indicators. Unfortunately, few land managers measure visitation at the scales that are 

relevant to adaptive management. Crowdsourced location data may come to our collective 

rescue.  

Crowdsourced location data is information collected from a group of visitors when users 

turn on location services in smart phone apps, like Google Maps, or track their activities using 

fitness apps, like Strava. The major advantages of using crowdsourced location data are that it is 

https://www.outdoorrx.org/
http://bea/
https://cpw.state.co.us/Documents/Trails/SCORP/2014/StandAloneExecutiveSummary.pdf
https://www.nationalgeographic.com/travel/destinations/north-america/united-states/happiest-cities-united-states-2017/
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cheap, it is available for virtually anywhere with few sampling biases. Traditionally, collecting 

data on the recreational use of parks is resource intensive and hence spatial and temporally 

limited. Yet, truly massive datasets of location data have been collected from smartphones over 

the last 20 years. Here, we harness the power of this underused, crowdsourced data gold mine to 

provide the missing information on visitation that land managers sorely need. 

The emergence of “big data” offers a promising additional source of data to generate 

information about visitor use patterns. The raw data collected by mobile devices (especially cell 

phones and smart mobile devices) have location, timestamp, and a unique (anonymous) identifier 

associated with each data point. Mobile data offer a number of advantages to understanding 

visitation (Wood et al. 2020), including: spatially and temporally comprehensive (not just at 

trailhead, trail counter, or on-trail, and 24/7/365); consistent information across all areas (not just 

the limited number of places sampled through traditional means), is conducted in a non-obtrusive 

manner, and after the initial analytical work, is cost-efficient. 

Crowdsourced location data can be used for managing increasing visitation, but its 

potential is almost completely unrealized. Yet, to move beyond simple graphical displays (such 

as the Strava Global Heatmap), additional research and development must be conducted to 

produce credible information to decision makers based on rigorous information. A number of 

emerging scientific analyses (e.g., Grantz et al. 2020) and applications (e.g., COVID mobility 

reports) have tapped “big data'' from mobile devices to understand visitor use patterns. Much of 

this work typically tends to be in urban areas and/or along transportation routes, especially roads, 

and make assumptions that might not readily apply to open space lands (e.g., QA/QC procedures 

from many data/application vendors assume this; Monz et al. 2020). Moreover, commercial 

products and vendors typically use proprietary, undisclosed statistical modeling and processing 
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steps (e.g., Monz et al. 2020). Finally, our own preliminary investigations at OSMP have shown 

mobile data can be used to recover, and expand upon, insights around the “surge” in visitation 

associated with the stay-at-home order of March 2019 (Fig. 1). 

Methods to process and analyze these data need to be appropriate for dealing with 

locational data that are subject to additional uncertainties that affect their quality, such as poor or 

uneven reception in rugged terrain and potentially uneven use by mobile phone users. Some 

emerging efforts are exploring use and comparison of statistical models to estimate use in more 

remote areas such as parks (Merrill et al. 2020). In addition to the scientific issues, there are 

pragmatic considerations as well, as these “big” data are indeed big. The volume of data can 

make it challenging to process with typical computational approaches. For example, analyzing 

and visualizing data using common desktop GIS or statistical software on a typical stand-alone 

workstation tends to be constrained to a few million features, whereas typical data volumes of 

the mobile data are in the billion to trillion range of features. Larger cloud-based solutions may 

decrease the computational overhead. 

The primary goals of the research presented here are to test, validate, and estimate visitor 

use patterns by analyzing and mapping mobile data. By mapping and analyzing “big data” from 

mobile devices, managers and decision makers will be able to better understand where visitors 

go (both on and off-trail usage) and when they do so (seasonal, weekly, and daily usage 

patterns). This information will inform decision making around resource management, protection 

priorities, and collaboration with land management partners. 

Methods  

Data sources  
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We used data provided by UberMedia using their Vista report generator interface 

(https://vista.um.co/). After a sales call, UberMedia provided 10 free credits for us to use for free.  

Future credits were quoted at $75 per credit. The geographic and temporal limitation on the 

query size allowed per credit were untested, but UberMedia said such limits existed. Note, Vista 

has a toggle to allow queries to include more than 2 million ft2 (~46 acres), which we turned on, 

but it is unclear if geographic extents above this size, or some other threshold, would be more 

expensive. Using Vista, you enter the parameters to query and the system returns a report in a 

matter of minutes, at the cost of one credit per query/report. We used these credits to download 

data from 2020 and 2021 for two different geographic extents (Map 1). These polygons were 

drawn by hand, on the fly, in the Vista software. We later created an additional shape in ArcGIS 

to “mask” the Chautauqua area more finely, largely to exclude baseline road and the parking lot 

(more below). As part of our report configuration, we selected the Common Daytime 

Location/Common Evening Location (CDL/CEL) add on, which provides the coordinates were 

each unique mobile device rests during the majority of the day (CDL; i.e., where the device 

works) and where it rests in the evening (CEL; i.e., where the devices lives/sleeps). We ran the 

queries over several months as we iterated on our R&D. The results that are presented in this 

report represent a combined ping dataset of 2,975,539 points. We also pulled a query of earlier 

years (starting Jan 2017) to see how data availability changes over time for Chautaqua; this 

query included 3,640,497 pings. 

Data wrangling 

An initial evaluation of the data was completed in Google Earth engine (Appendix 1). 

Inferences on the spatial accuracy and temporal resolution of the ping data were taken forward 

into a future work session completed in R, and described below. 

https://vista.um.co/
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As part of our pre-analysis planning, we decided that we wanted all R scripts to be self-

contained and standalone from all other analysis script. To support this, we performed some 

initial data wrangling in order to establish a common, pre-formatted dataset, from which all the 

subsequent analyses scripts would begin. The scripts and data for this project are stored here: 

https://cityofboulder.sharepoint.com/sites/OSMPMobileDataProject/Shared%20Documents/For

ms/AllItems.aspx (accessible only to City of Boulder staff). 

The ping data from the UberMedia Vista system was the largest in terms of number of 

records and were exported from the Vista system as four separate tab separated data files 

(compressed as a Zip archive). Using R, we read in the four data files and then appended them 

into a single dataset. After a few adjustments to set data types, arrange the data, and filter to 

January 1, 2020 and later, we saved the data as an RData object, allowing us to read in a 

preformatted data object at the start of each analysis script. The CEL/CDL and Demographics 

datasets were exported from Vista as single tab separated datasets and did not need pre-

processing before being used in subsequent analysis scripts. 

 During exploratory analysis, we discovered that major roadways adjacent to our study 

area (e.g., Baseline road next to Chautauqua) captured large numbers of pings from devices that 

were not associated with the recreational area of interest (i.e. vehicles moving on the roadways) 

t. To minimize the effects of pings from travel corridors such as this, we drew several analysis 

polygons by heads up digitizing them in ArcGIS. For the Chautauqua study area, our largest 

polygon excluded all roadways but included the Ranger Parking Lot. We also created two 

additional polygons for Chautauqua, one that excluded the Ranger Lot (i.e. only included trails) 

and one that applied a 100m inward buffer (to filter out potential edge effects). The geographic 

https://cityofboulder.sharepoint.com/sites/OSMPMobileDataProject/Shared%20Documents/Forms/AllItems.aspx
https://cityofboulder.sharepoint.com/sites/OSMPMobileDataProject/Shared%20Documents/Forms/AllItems.aspx
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extent for Bobolink was drawn carefully to avoid roads and parking areas (Map 1), and thus did 

not need any geographic filtering after download. 

We then used these analysis polygons to clip the data, which improved both analysis 

processing time and subsequent visualization by only retaining data with the area of interest. 

Data analysis 

1. Correlations 

The Chautauqua and Bobolink area have permanently installed trail counters which count      

pedestrians in both directions in 15 minute increments. One of our initial research questions was 

to see how well the UberMedia ping data and trail counter data correlated. We explored 

correlations at multiple temporal and spatial scales and ultimately decided to analyze counts at 

the daily level.  

The first step was to clip the ping data to the study area. For the Chautauqua area, we 

clipped the ping data using the most extensive analysis polygon, which included the Ranger Lot 

but excluded roadways. Devices can ping anywhere from one to hundreds of times within the 

study area on any given day. To get a better representation of unique visits (more in line with 

what the trail counters collect), we grouped the ping data by day and then counted the distinct 

device IDs present in the study. We built a linear model using the estimate of daily visits from 

the trail counter as the dependent variable and number of distinct device ids as the independent 

variable (Fig 2b). 

The resulting terms from the linear model were then used to weight the daily count of 

device ids to produce a continuous time series of estimated visits at the trail counter. Trail 

counter data and the weighted device id counts were then overplotted to visualize daily and 

seasonal patterns (Fig 2a). 
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2. Along-trail travel (heat map) 

Travel statistics along trail corridors were determined by rasterizing the ping data, with 

cell values representing a count of the number of pings that fell within the cell. Because different 

devices ping at different rates, with even the highest frequency devices pinging 10s to 100s of 

meters apart, we were limited in how fine of a temporal resolution we could extract from the 

data. Travel corridors were easily revealed (and confirmed by overlaying trails from OSMPs 

GIS) when analyzing ping data from the entire year.  

One important consideration we had to deal with when rasterizing the data was not just 

the spatial distribution but how that interacted as a function of temporal distribution. Clear 

spatial patterns remained at the monthly level, but daily analysis proved to be too sparse to reveal 

all but the most heavily used trails. However, some finer temporal resolution analysis, such as 

hourly patterns, were possible so long as the hour of the day was aggregated across many weeks 

or months. 

To create the raster layers, we defined an empty raster grid using the extent of all ping 

data. We tested multiple pixel resolutions but found that about 8 meters (square) yielded a good 

balance between being large enough to summarize ping densities consistently along a trail 

segment (as we expected values to remain relatively consistent along a segment) but small 

enough to reveal individual trail corridors. 

The last step for most raster analyses was to apply a raster filter to remove any cells with 

values below a certain threshold. From our exploratory analysis, we determined that ping points 

could occasionally have high spatial error. Removing cells with counts below a certain threshold 

was one of the simpler methods to remove potential effects from erroneous ping data, while also 

improving readability of the final raster data when plotted visually. 
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3. Visitor origin  

In addition to the point data provided by the ping dataset, UberMedia was also able to 

provide related data, summarized by device id. One such dataset was the common evening 

location, common daytime location (CELCDL) dataset. Based on where the device is commonly 

located at night, UberMedia can derive a number of additional variables including the general 

residence location (town, city, county) and associated distance of the common evening location 

to the analysis area. Using the device id as the matching variable, we joined these data to the 

ping dataset, resulting in a new ping dataset that included additional information about the device 

owner (aka visitor). 

As we described above, by calculating the density of ping points across the analysis area, 

we were able to reveal travel corridors based on contiguous patterning of high value cells. Sub-

setting the ping data based on newly joined variables, such as for a particular residency class or 

other category allowed us to create separate raster layers based on these variables. We then used 

these sub-set raster layers, in conjunction with the initial raster of all ping data to perform raster 

calculations. For example, by creating one raster of ping counts from all devices, and another 

raster of ping counts from only devices with a common evening location within a certain 

proximity of the analysis area, we were able to divide the “proximate” raster by the “all” raster to 

derive a proportional raster representing the percent of visits to an area from within a certain 

travel distance. 

4. Off-trail travel 

 We analyzed the ping data for the presence of undesignated or off trail travel use. When 

contiguous lines of higher density raster cells were present, but designated trail features did not 

intersect with the raster lines, this suggested the presence of undesignated trail routes. 
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Furthermore, if after filter the final raster output for cells with counts that fell below a certain 

threshold (typically 2 or 3 ping counts) cells or groups of cells remained that were not associated 

with a travel corridor, this suggests potential off-trail destinations. 

Results  

1. Correlations 

The number of devices per day were significantly related to daily visits (P < 0.001; Fig. 1, 2). 

2. Along-trail travel (heat map) 

Patterns of visitation along trails matched our expectations, both in space and time. For example, 

visitation was busier on the Chautauqua trail and the Royal Arch trail than surrounding trails 

(Fig. 4), and visitation was higher in summer months than winter months (Fig. 5). We don’t, 

however, have any data to validate the along-trail travel patterns against. 

3. Visitor origin 

At Chautauqua, “Local” devices tended to be more prevalent away from the main Chautauqua 

trail and Royal Arch trail, where “Regional” and “Other” devices were more common (Fig. 7); 

likewise, Local devices were relatively common in mornings and evenings and winter months, 

while Regional and Other devices were relatively common in midday times and summer months. 

While these results are qualitatively in line with expectations from previous visitor surveys, it is 

difficult to know how to evaluate the statistical significance of strength of these results on visitor 

origin. These analyses were not repeated for Bobolink. 

4. Off-trail travel 

Within Chautauqua, three possible hot spots of off-trail travel were identified. Moreover, some 

known undesignated trails were observable in the heat map (Fig. 4). These analyses were not 

repeated for Bobolink. 
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Discussion 

The UberMedia data was significantly related to visitation counts, but the noise around 

the fit (despite our best analytical efforts) was substantial and concerning. More worrisome was 

the drastic change-in-over time in the amount of UberMedia data (Fig. 9), which would be 

confounded with any “real” signal in increasing visitation, in both an absolute and relative sense. 

Likewise, our investigation of device origin and off-trail travel, although cursory at best, 

revealed patterns that made sense, but we lacked the ability to correlate these patterns with 

known estimates, and thus have little confidence in using this information to guide any 

management choices.  

All four of our investigative areas (correlation with trail counts, heat maps, visitor origin, 

off trail travel) beg for a continued and substantial research and development investment by 

OSMP to help sharpen the inferences and move towards a credible, production-level, web-based 

mobility data explorer. At the minimum, OMSP would need to evaluate more sites and more 

time windows to better understand the signal in the mobility data and build area- and time-

specific calibrations.  

At this time, however, we recommend that OSMP staff and partners do not make this 

investment for a couple of reasons. First, the mobility data market appears to be highly volatile. 

Cell phone location services are changing as new laws and software are put in place, drastically 

changing the availability of device location data. Another volatility is that the cottage industry of 

location-services companies is changing rapidly as companies are bought and sold. Thus, any 

products OSMP would make today may not work in the future (i.e., data set dries up or the 

company folds). If OSMP wants to continue with R&D, it may be better to wait say 3-5 years for 

the market to settle down. Second, a huge number of analytical choices need to be made in the 
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processing of the mobility data, and this complexity may be best left to the companies dedicated 

to this endeavor, assuming they are transparent about their choices. Third, the inference gains 

that we are able to make seem marginal, and/or easily recovered using other 3rd party heat maps. 

A solid, cost-effective alternative may be the recently released Strava Metro. Our initial 

exploration suggests that this new dashboard tool shows reasonable signal in visitation patterns 

(i.e., heat map) along OSMP trails, but has a lot of other nice features: (1) distinguishes among 

hikers vs bikers, (2) is rendered for the entire county, allowing comparison with BCPOS and 

USFS trails, (3) can separate locals from tourists (because it knowns where each device sleeps at 

night), and (4) has the ability to look at specific time windows. Moreover, this dashboard appears 

to be free. Of course, a major limitation of Strava is that its location data comes from Strava 

users, which may skew heavily towards fitness-focused men in their 30s (personal observation). 

Thus, Strava Metro may be the more cost-effective direction for OSMP staff than UberMedia, 

but biases in the population being sampled should be evaluated. We suspect that the Strava 

Metro team and/or researchers in this field have already done this. 
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Tables 

Table 1. Device origin (where the device regularly resides during their overnight hours) by area 

(Chautauqua and Bobolink). X2 = 28.0, P < 0.0001 
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Table 2. Month-over-month patterns by device origin (where the device regularly resides at 

night) at Chautauqua. Numbers are proportions of devices. 
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Maps 

a.  

b.  

Map 1. Two geographic extents examined in the study (white rectangles). Chautauqua (a), 

measuring 1,881 acres in area, and Bobolink (b), measuring 37 acres in area. Not presented at 

scale (i.e., Bobolink is relatively smaller than it appears).
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Fig. 1. Large increases in visitation Chautauqua driven by the Stay-at-Home order in Boulder, 

CO. Top panel shows data collected on-site using trail counters. Bottom panel shows mobile 

data. The mobile data recovers the same signal of increased visitation as the trail counters, and 

the mobile data adds a new insight on where visitors are from. Note, this data was sourced from 

Unacast for March of 2020; the remainder of this report is based on UberMedia (a competitor of 
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Unacast) from 2020 and 2021. This early result encouraged us to investigate mobile data in more 

depth.
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a. 

 

b. 

 

 

Fig. 2. Trend in the number of daily devices (black line, data from mobile phones) and daily 

visits (red line, data from trail counters) over a 20-month period (Jan 2020 – Aug 2021) at 



22 
 

Chautauqua (a). Correlation of the number of daily devices (y axis) and daily visits (x axis) for 

the same dataset (b). 
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a. 

 

b. 

 

Fig. 3. Trend in the number of daily devices (black line, data from mobile phones) and daily 

visits (red line, data from trail counters) over a 20-month period (Jan 2020 – Aug 2021) at 

Bobolink (a). Correlation of the number of daily devices (y axis) and daily visits (x axis) for the 

same dataset (b). 
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a.

b.  

 

Fig. 4. Heat map of visitation for the Chautauqua (ab) and Bobolink (b) areas. Bright yellow 

areas are higher use, red medium, and blue low use. Raster cells are ca. 25 m2 (5m x 5m) 
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Fig. 5. Animated heat map of month-over-month visitation at Chautauqua. 
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Fig. 6. Visitation (based on mobile data) by month (facets), time of day (x axis) and device 

origin (where the device regularly resides at night; colors) at Chautauqua.
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Fig. 7. Heat maps of visitation (based on mobile data) by device origin (where the device 

regularly resides at night). 
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Fig. 8. Three possible locations of off-trail hotspots. 
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Fig. 9. Trend in the amount of data available from UberMedia at Chautauqua. Note, this date 

range (Jan 2017 – Dec 2020) differs from the date range used in the rest of the report (Jan 2020 - 

Aug 2021).  
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Appendices 

Appendix 1. Initial data exploration in Google Earth Engine completed by Dave Theobald. 

NOTES DMT 20210621  

Filtering (DMT GEE script path; URL) 

- Date: UberMedia data from 2018-06-01 to 2020-12-31 

- Spatially - to the Chautauqua interior polygon 

Estimating spatial precision of pings, particularly valuable for understanding reasonable pixel size for 

heat maps (GEE script path; URL) 

- Identified 4 different locations that would be roughly representative of different  

- Heads up digitizing of road/trail segment, buffered by 50 m 

- terrain/vegetation contexts and cell tower reception 

- Locations: 

- NCAR road: open terrain, close to towers, many pings 

- Gregory Canyon Road: canyon, sheltered, many pings 

- BluebellRoad:  

- Ranger Trail: sheltered, rugged, obscured(?) from cell towers, fewer points 

 

- For each ping, get the distance (m) from the center-line of test area, within the 50 m buffer 

- Summary results, settled on using 2 SD as rough estimate: 

- Context,count,mean,SD,precision68,precision95,95th 

- NCAR,23201,3.77,5.6,9.37,14.97,11.36 

- Greg,11927,5.40,8.12,13.52,21.64,22.09 

- Bluebell,11863,6.51,7.69,10.11,19.15,22.35 

- Ranger,6.44,7.09,13.53,20.62,37.87 

https://code.earthengine.google.com/?scriptPath=users%2FDavidTheobald8%2FEXP_BoCo%3AVisitation%2FCalculate%20visitor%20UberMedia%20ping%20rates
https://code.earthengine.google.com/cc6cf4abcd861c2e83f82e107d3ef33b
https://code.earthengine.google.com/?scriptPath=users%2FDavidTheobald8%2FEXP_BoCo%3AVisitation%2FCalculate%20UberMedia%20spatial%20precision
https://code.earthengine.google.com/0841b35e2a458f55b9a0272896bd64e3
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- Approximate median of the estimate at 95% is 21 m 

Heat maps (GEE script path; URL) 

- Each ping assigned “population” value of 1…  

- Kernel density (gaussian) of 20 m radius was applied to set of pings 

- Normalized by the number of days to enable rough comparisons to other time-slices 

 

 

UserId-days 

- Summary stats: 8465 unique id-days in TC buffer, 1.65 50%, 5 at 75%, 9.2 at 90%, 13.3 at 95%, 

45.6 at 99%, and 643 at 100% 

- Unique Id Days # and percentiles: 

- 8465 

- JSON 

- Object (6 properties) 

- p100: 

- 643 

- p50: 

- 1.655577623303542 

- p75: 

- 5.008421052631579 

- p90: 

- 9.198966408268733 

- p95: 

- 13.345549738219896 

- p99: 

- 45.588235294117645 

-  

----------- summary stats of spatial precision mini analysis 

NCAR sample 

JSON 

Object (13 properties) 

max: 

49.923804633259344 

mean: 

3.7691435082557825 

min: 

https://code.earthengine.google.com/?scriptPath=users%2FDavidTheobald8%2FEXP_BoCo%3AVisitation%2FCalculate%20visitor%20heat%20maps
https://code.earthengine.google.com/f04612452eac7eb8c6af139919d60b63
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0.001894416205393969 

sample_sd: 

5.597131357335474 

sample_var: 

31.327879431268045 

sum: 

87447.8985350424 

sum_sq: 

1056410.481879384 

total_count: 

23201 

total_sd: 

5.597010733403963 

total_var: 

31.32652914983917 

valid_count: 

23201 

weight_sum: 

23201 

weighted_sum: 

87447.8985350424 

 

JSON 

Gregory Canyon sample 

JSON 

Object (13 properties) 

max: 

49.9462035903996 

mean: 

5.396822282792743 
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min: 

0.002274814775111783 

sample_sd: 

8.121943900947024 

sample_var: 

65.96597273013056 

sum: 

64367.89936686905 

sum_sq: 

1134092.3043792169 

total_count: 

11927 

total_sd: 

8.12160340819315 

total_var: 

65.9604419199746 

valid_count: 

11927 

weight_sum: 

11927 

weighted_sum: 

64367.89936686905 

 

JSON 

Bluebell sample 

JSON 

Object (13 properties) 

max: 

49.589553491836696 

mean: 
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6.513914174989794 

min: 

0.004989799965270549 

sample_sd: 

7.690482968225195 

sample_var: 

59.14352828456181 

sum: 

77274.56385790392 

sum_sq: 

1204920.4093916265 

total_count: 

11863 

total_sd: 

7.690158824035541 

total_var: 

59.1385427388917 

valid_count: 

11863 

weight_sum: 

11863 

weighted_sum: 

77274.56385790392 

 

JSON 

Ranger sample 

JSON 

Object (13 properties) 

max: 

49.09348430448336 
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mean: 

6.441635985506967 

min: 

0.0040294711413162215 

sample_sd: 

7.092297402373241 

sample_var: 

50.30068244371022 

sum: 

17431.066976781854 

sum_sq: 

248347.9343136563 

total_count: 

2706 

total_sd: 

7.090986805041092 

total_var: 

50.28209386926687 

valid_count: 

2706 

weight_sum: 

2706 

weighted_sum: 

17431.066976781854 

-------------------------------------------------------- 

 

 

-------------------------- Quick summary stats for filtering ---------- 

Running from 2018-06-01 to 2020-12-31 
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JSON 

# all pings 

3640497 

 

JSON 

Chat. interoir # pings and unique user IDs: 

1980549 

68483 

 

JSON 

# pings and IDs interior: 

1424532 

47199 

 

JSON 

# pings and IDs in TCChat segment: 

39282 

8465 

 

JSON 

# pings and IDs TCChat hour: 0 

42 

22 

 

JSON 

# pings and IDs TCChat hour: 1 

60 

22 
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JSON 

# pings and IDs TCChat hour: 2 

64 

34 

 

JSON 

# pings and IDs TCChat hour: 3 

79 

46 

 

JSON 

# pings and IDs TCChat hour: 4 

184 

77 

 

JSON 

# pings and IDs TCChat hour: 5 

554 

178 

 

JSON 

# pings and IDs TCChat hour: 6 

999 

248 

 

JSON 

# pings and IDs TCChat hour: 7 

957 

340 
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JSON 

# pings and IDs TCChat hour: 8 

1313 

472 

 

JSON 

# pings and IDs TCChat hour: 9 

2037 

764 

 

JSON 

# pings and IDs TCChat hour: 10 

2654 

1057 

 

JSON 

# pings and IDs TCChat hour: 11 

4168 

1311 

 

JSON 

# pings and IDs TCChat hour: 12 

4160 

1291 

 

JSON 

# pings and IDs TCChat hour: 13 

4314 

1252 
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JSON 

# pings and IDs TCChat hour: 14 

4259 

1214 

 

JSON 

# pings and IDs TCChat hour: 15 

3343 

1004 

 

JSON 

# pings and IDs TCChat hour: 16 

3113 

865 

 

JSON 

# pings and IDs TCChat hour: 17 

2610 

629 

 

JSON 

# pings and IDs TCChat hour: 18 

1736 

501 

 

JSON 

# pings and IDs TCChat hour: 19 

1036 

335 

 



41 
 

JSON 

# pings and IDs TCChat hour: 20 

738 

197 

 

JSON 

# pings and IDs TCChat hour: 21 

435 

95 

 

JSON 

# pings and IDs TCChat hour: 22 

112 

39 

 

JSON 

# pings and IDs TCChat hour: 23 

300 

28 

 

---------------------------------------- end summary stats 

- Filter by Chaut. Trail counter buffer of 21 m 

-  

 

 

Some quick screen snapshots 

All dates, all days 
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Weekdays all dates 



43 
 

 

 

 



44 
 

Weekends all

 

 

 

Pre-COVID all days 
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Weekends pre-COVID 
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Weekdays pre-COVID 
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All post-covid 

 

 

Post-covid weekends 
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Post-covid weekdays 

 


