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Abstract: 

Forests are dynamic ecosystems that experience constant fluctuations in structure, 

composition, and extent. Though much is known about disturbance regimes and landscape 

change in the northern Front Range of Colorado (NFR), there currently is no quantification of the 

extent of forest cover change for the NFR from the early 1900s to the present. Herein, we 

combine repeated landscape photography and aerial photography to assess changes in forest 

extent across the NFR over the past century. The data included in these analyses are spatially 

comprehensive, covering 320,000 ha, and in the future may be paired with data from 66 field 

sites in which stand ages and fire scars were extensively sampled, or with models derived from 

these data. Oblique landscape photos provide a unique and important contribution to this work 

by extending the temporal coverage of the data (ca. 1900 to present), and providing useful 

records that can be utilized by local managers for interpretation and outreach. Preliminary results 

suggest slight increases in forest cover across OSMP properties surrounding Boulder, CO, and a 

majority of these properties (>87%) meet previously established criteria suggesting that fuel 

treatments and forest restoration are convergent goals. 
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Introduction 

 Forests are constantly changing in response to climatic factors, ecological disturbances, 

and patterns of human land use (Hansen et al. 2013). These dynamic ecosystems are crucially 

important to the earth’s biosphere, providing habitat for countless wildlife species (FAO 2015), 

playing a major role in the global carbon cycle (Bonan 2008), protecting watershed quality 

(Rocca et al. 2014), and supplying numerous economic, social, and spiritual benefits. Because of 

this, ecologists have long been interested in forest dynamics (Attiwill 1994). While past 

ecosystem behavior is not a perfect analog for the future (Millar et al. 2007), retrospective 

studies using tree ring data, charcoal, pollen, and historical documents and photos can still 

provide important insight into the way that forest ecosystems may respond to future events, 

improving modeling efforts, and better defining lines of future inquiry (Swetnam et al. 1999, 

Hayward et al. 2012). While much is known about the historical ecology of conifer forests in the 

northern Colorado Front Range (NFR; Veblen and Donnegan 2005, Kaufmann et al. 2006), the 

basis for our knowledge is primarily derived from localized case-studies or samples from the 

broader landscape. In this project, we have the goal of developing seamless maps of forest cover 

across the NFR for the time-periods of 1938, 1999, and 2015, which will be useful for 

comparison with patterns of the potential drivers of forest change (climate, disturbance, and 

development). We have also paired these images with oblique landscape photos, captured ca. 

1900 and 2016. 

Wildfire and Disturbance in the NFR   

 Wildfire is one of the most important terrestrial disturbances (Bowman et al. 2009), and 

has played a key role in forests of the NFR (Veblen and Donnegan 2005). Prior to the 20th 

century, fires were relatively frequent and of low-moderate severity in low elevation montane 
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forest and grassland sites (below 2260 m), but fire severity typically increased with elevation, 

and high-elevation coniferous forests often experienced large, high severity fires initiated by 

extreme drought (Sibold et al. 2006, Sherriff et al. 2014). The mid-late 1800s were a time period 

of heightened fire activity in the NFR concurrent with widespread droughts throughout the 

Rockies (Veblen et al. 2000, Kitzberger et al. 2007, Sherriff and Veblen 2008, Schoennagel et al. 

2011, Gartner et al. 2012). These decades were also coincident with increases in logging, mining, 

and other impacts from Euro-Americans, which demonstrated visible influences on forest 

structure (Veblen and Lorenz 1986, Veblen and Donnegan 2005). This period of enhanced fire 

activity (Era 1: ca. 1850 – 1920) was followed by the fire exclusion era (Era 2: 1920 – 2000), in 

which relatively few fires burned across much of the NFR, likely due to a combination of direct 

fire suppression, grazing by cattle and sheep, lack of combustible fuels in higher, recently burned 

sites, and unsuitable climatic conditions for ignition and spread. The relative ecological impact 

of this gap in fire activity varies from low to high elevation sites, and forests at the lower extent 

of ponderosa pine (Pinus ponderosa) are considered to have deviated most substantially from 

their natural ranges of variability (Platt and Schoennagel 2009, Sherriff et al. 2014). So, while 

forest cover across the NFR has undergone considerable change over the past century, the 

relative influence of Euro-American fire exclusion varies at a coarse-scale along the elevation-

climatic gradient and at a fine-scale due to local topographic variability. 

 Since ca. 2000, there is mounting evidence that we have entered a third era in the forests 

of the American West and in those of the NFR, one in which anthropogenic climate change may 

be the most important driver of ecosystem change. Across much of the western United States, the 

area burned in large wildfires has increased since 1984 (Dennison et al. 2014), and more than 50 

percent of the area burned in this time period can likely be attributed to anthropogenic climate 
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change, rather than just natural climate variability (Abatzoglou and Williams 2016). Similarly, 

bark beetle outbreaks (Dendroctonus spp. and Ips spp.) can transition from endemic to epidemic 

levels with warmer temperatures and increased drought stress (Breshears et al. 2005, Raffa et al. 

2008), and the area attacked by beetles has expanded in recent years (Bentz et al. 2010, Chapman 

et al. 2012). Because many disturbance types (e.g. fire and insect outbreaks) are predicted to 

increase under continued climate warming, it is important to understand the effect these events 

have on forest structure and subsequent successional trajectories (Turner 2010). 

Past Forest Change in the NFR 

 Previous studies of the changes in forest cover and structure across the NFR have used 

historical documentary sources, historical aerial and oblique landscape photography, 

dendrochronological data, and remote sensing techniques, but have been spatially and/or 

temporally limited. Veblen and Lorenz (1986, 1991) paired historical landscape photos (ca. 

1900) with contemporary photos (ca. 1980), tree ring data, and historical records of land use to 

describe structural changes in montane and subalpine forests of the NFR. A series of studies 

published by members of the Veblen Lab at CU between 2000 and 2012 have used tree-ring 

methods to document spatio-temporal patterns of fire history and associated changes in forest 

structure across Boulder County in the lower and upper montane zones (Veblen et al. 2000, 

Sherriff and Veblen 2006, 2007, Schoennagel et al. 2011, Gartner et al. 2012). Recent tree-ring 

based research performed by a different research group suggests similar trends in lower montane 

zone of Boulder County (Brown et al. 2015). The extensive tree-ring dataset of the CU group has 

recently been used for a comprehensive spatial reconstruction of historical fire severity and its 

comparison with actual and potential modern fire severity across the montane zone of the NFR 

(Sherriff et al. 2014). With a slightly different approach, Williams and Baker (2012) used 
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General Land Office records and associated bearing tree information to quantify historical forest 

structure and fire regime class in the NFR. Despite the differences in data sources and analytical 

methods, these aforementioned studies are cohesive in that they demonstrate two important 

findings: 1) Conversion of some grassland sites to forests at lower elevations. 2) Increasing fire 

severity and decreasing frequency with elevation, with montane forests in the NFR showing a 

wide range of historical fire regimes.  

  The air photo approach has been successfully utilized in previous work in the NFR, and 

provides substantial increases in spatial resolution and extent when compared to other data 

sources. Mast et al. (1997) used manual photo interpretation, historic maps, and a binary remote 

sensing classification of forest vs. non-forest to quantify tree invasion into grasslands at three 

study areas in lower montane forests surrounding Boulder, CO, 1937-1991. Platt and 

Schoennagel (2009) expanded upon this approach by developing a sophisticated classification 

algorithm, and surveying 39 separate sites across the montane zone in Gilpin, Jefferson, Boulder, 

and Larimer counties. Our approach combines image classification of 308 of these air photos 

with oblique landscape photography and extensive field data, providing seamless estimates of 

land cover across broad spatial (ca. 320,000 ha) and temporal (1938-2015) extents. Specifically, 

we had the following objectives: 1) Assess changes in forest extent across the NFR using oblique 

landscape photos and aerial photos. 2) Determine the spatial associations of historical fire 

regime, recruitment pulses, and topographic position with changes in forest extent across the 

study area (1938-1999). 3) For the most recent time period of analysis (1999-2015), assess the 

effects of wildfires and bark beetle outbreaks on changes in forest extent.  

Methods – Landscape Photos 
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Data Acquisition – In databases managed by the Boulder Public Library, the Denver Public 

Library, and the Colorado Historical Society, we performed a targeted search for landscape 

photos covering portions of Boulder OSMP properties. Many of the images contained in these 

databases were captured by early photographers in the Boulder area - such as William Henry 

Jackson and Joseph Sturtevant - between 1890 and 1910. Veblen and Lorenz (1986, 1991) 

previously collected ~70 of these repeat landscape photos, and our recent collection provides 20 

additional image pairs in the areas surrounding Chautauqua, Flagstaff Mountain, Settler’s Park, 

and Mount Sanitas in Boulder County, CO. 

Photo Re-location and Image Processing – Following the identification of images in library 

databases, we acquired low-resolution digital scans of these images and re-located the 

approximate location of the original photo. When the original photo location was obstructed by 

vegetation or recent development, we located the nearest suitable site and repeated the image 

from a slightly different vantage point. During photo collection, we also recorded UTM 

coordinates and elevation for each photo point for future use. We collected imagery in the field 

during the time of day that best re-created the original exposure, typically early to mid-morning. 

After image collection, we manually aligned and cropped the recently collected image to match 

the historical photo. When historical and contemporary images provided a reasonable match and 

were judged to be useful, we requested or purchased high-resolution copies of these images from 

library collections to facilitate reproduction and printing. 

Methods – Air Photos 

Study Area – Our study area for the aerial photos encompasses ~320,000 ha in Boulder, Clear 

Creek, Gilpin, Jefferson, and Larimer Counties, and ranges 39.7-40.7 N, and 105.2-105.6 W 

(Figure 1, Table 1). Climate varies widely across the region, and elevations in the study area 
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range 1600-4200m. Along this elevational gradient, vegetation in the study area begins with 

short grass prairie at the lowest sites, transitioning into lower montane forests (principally 

dominated by Pinus ponderosa) and upper montane forests (Psuedotsuga menziesii and Pinus 

contorta, with fewer Pinus ponderosa). At the highest forested sites, Pinus flexilis, Abies 

lasiocarpa, Pinus contorta, and Picea engelmanii are commonly found, giving way to alpine 

vegetation at ca. 3400m (Kaufmann et al. 2006). Euro-American settlement of the NFR rapidly 

increased in the mid-1800s, and logging and mining impacts are widespread, with recovery rates 

from these anthropogenic disturbances varying across the landscape (Veblen and Lorenz 1986). 

Datasets – We acquired aerial images and GIS datasets for the study area from several sources. 

Historical air photos were available through the University of Colorado Boulder Library, and 

were originally captured in flights by the United States Department of Agriculture in 1938 and 

1940 (Figure 1; Table 1). Though the images were acquired in separate time periods, only one 

flight line of 35 photos was collected in 1940 (the majority having been captured in 1938). The 

UC Boulder Library scanned and digitized over 1,700 individual images from this time-period, 

covering much of the NFR. The scanned images are between 1.2 and 1.4m in nominal ground 

resolution, with pixel size varying based on camera altitude and ground surface elevation. The 

aerial photo program was originally established to inventory timber stands and monitor 

agricultural areas (Matthews 2005), and has continued to operate intermittently within the NAPP 

and NAIP (National Aerial Photography Program and National Agricultural Imagery Program, 

respectively). Therefore, we acquired data from the NAPP (1999, greyscale), and NAIP (2015, 4-

bands in visible and near infrared portions of the spectrum) to compare with historical imagery. 

These recently collected datasets have 1m spatial resolution.  
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For later use in GIS analysis, we have obtained several ancillary datasets. These include 

digital elevation models (10m) from the US Geological Survey (USGS 1999), as well as current 

land cover and vegetation data from the National Land Cover Dataset (Homer et al. 2015), and 

LANDFIRE (Rollins 2009). We also obtained layers describing the locations of water bodies and 

building footprint and parcel data from county and city GIS databases, road data from Open 

Street Map, and LiDAR-derived canopy height models that cover city open space properties in 

the foothills near Boulder, CO. Additionally, we have identified 66 separate field sites in which 

data were collected to summarize fire history and stand ages (Figure 1). These sites were a subset 

of those synthesized in Sherriff et al. (2014), and were selected because they were within the 

footprint of the available aerial photos. These sites, as well as the model of fire regime class 

created from them, have yet to be directly compared to changes in land cover and forest extent. 

Air Photos, Data Processing and Analysis – Following data acquisition, we georeferenced the 

historical air photos using metadata from each image that described the approximate center 

location of the frame. The images were originally provided in .jp2 format, and we converted 

them to the geotiff format while projecting the data to the NAD83, UTM zone 13N. We later 

mosaicked individual flight lines of images collected on the same dates (11 total image “strips”) 

using a spline transformation with nearest neighbor re-sampling and at least 40 tie points in 

overlapping areas shared between adjacent images. The next step in this process is to stitch and 

mosaic individual flight lines to one another. We will perform this mosaicking in a similar 

manner to that described above, and will then use Adobe Photoshop CS6 to correct for tonal 

differences and inconsistencies in the final image. The DOQ (1999) and NAIP (2015) imagery is 

already georeferenced, orthorectified, and available in the UTM projection. The dependent 

variable in these analyses is percent forest cover (canopy cover) in an aggregated pixel, where 
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spatial resolution of the dataset will be based on the accuracy of georeferencing between 

historical and contemporary imagery (likely in 100m x 100m cells). 

 Following Coburn and Roberts (2004), we used an expanding-window method to 

describe the variance in tonality (pixel brightness values) around each pixel in each image. In 

short, this method computes the mean and standard deviation of pixel brightness values in 3x3, 

5x5, 7x7, 9x9, 11x11, 13x13, and 15x15 pixel windows surrounding each cell in the original 

data, then summing the result of all operations. We computed the local standard deviation to aid 

in differentiating between cover types that have similar spectral characteristics but different 

levels of local variation. This approach was experimental but demonstrated promising results for 

some of the available imagery, and appears particularly useful when differentiating between 

dark, homogeneous areas (such as shadow or water), and dark areas with variance (forests).  

Similar to Platt and Schoennagel (2009), we also identified dark pixels surrounded by 

light areas in an effort to improve the classification of individual trees that may appear spectrally 

different than patches of dense, contiguous forest. This method also uses an expanding window 

approach, and utilizes the mean and standard deviation from each window as follows: 𝑖𝑓(𝑥 <

(𝜇 − 2𝜎)){𝑐𝑣 = 𝑐𝑣 +  1} 𝑒𝑙𝑠𝑒 {𝑐𝑣 = 𝑐𝑣 +  0}, where x is the value of cell being considered, cv 

is the cell value in the “darkness” layer, 𝜇 represents the mean within the window of a given size 

(3, 5, 7, 9, 11, 13, 15), and 𝜎 is the standard deviation of pixel values in this same window. So a 

pixel is considered to be significantly darker than its surroundings it if it has a value lower than 

the the window mean () minus two standard deviations (). These calculations are then 

summed across all window sizes. We completed these analyses in Python 2.7, using the GDAL 

(Geospatial Data Abstraction Library), SciPy, and NumPy modules. We have also experimented 

with image segmentation methods that group pixels with relatively similar values together into 
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objects (e.g. segment mean shift, k-means). This approach has gained popularity among analysts 

working with high-resolution data, and may be especially useful due to tonal differences between 

similar cover types on different slopes and aspects and image tiles. Segmentation may also 

account for poor image quality in portions of the historical air photos (Platt and Schoennagel 

2009). It is also possible to incorporate the size and shape (circularity, rectangularity) of 

segmented objects into the final classification.  

 To test the more traditional pixel-based approach to image classification (rather than an 

object-based one), we selected training pixels along a East-West transect of imagery tiles in 

Boulder County. We selected the location of these transects with the goal of obtaining a 

representative sample of the larger geographic region of the NFR. The transects include areas of 

sparse forest cover at lower elevations as well as dense, relatively homogeneous forests at higher 

elevations. These sample areas are also topographically complex, having wide variations in slope 

angle and aspect which leads to differences in lighting conditions. Because the goal of this 

project is to distinguish forest cover from the surrounding areas without forest cover, we visually 

identified three distinct cover types. These cover types were forest, non-forest (roads, bare 

ground, and grassland) and water/shadow. Along this transect, we selected 100 pixels each of the 

three different cover types from each set of imagery (1938, 1999, 2015).  

Next, we developed a decision tree classification for each set of imagery (1938, 1999, 

2015) based on a conditional inference framework. Similar to random forests, conditional 

inference is an iterative machine learning procedure that identifies important variables, as well as 

the interactions between variables in complex, multivariate datasets (Breiman 2001, Hothorn et 

al. 2014). Conditional inference and random forests are useful for the purpose of remote sensing 

classification because they identify optimal binary splits of values that best differentiate between 
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known classes (Horning 2010), in this case forest, non-forest, and water/shadow. Ancillary data 

such as slope, elevation, aspect, climate, or landcover classification can also be incorporated to 

improve upon the spectral classification, though we did have not yet completed this for this 

analysis. We used conditional inference trees in the “party” package (Hothorn et al. 2014) and 

assessed model fit using the “caret” package (Kuhn 2015), both in the R environment. Following 

development of the classification scheme, we performed a classification in a separate geographic 

region. In this region, an additional East-West transect in Boulder County, we visually identified 

300 pixels each of the three cover types (900 total) for model validation and accuracy 

assessment. We then calculated producer’s and user’s accuracy for the classification using these 

pixels within confusion matrices for each set of imagery (1938, 1999, 2015). As further 

validation of the 2015 NAIP classification, we compared our results to the area of OSMP 

properties occupied by tree crowns identified through the previous canopy segmentation of 

LiDAR products. 

To present preliminary results of the analysis, we compared classification results for the 

1938 and 2015 imagery covering OSMP properties. OSMP properties were initially included in 

this analysis if they were within the extent of the 1938 imagery, and had visible conifer forest 

cover during one of the time periods. We then removed small, isolated parcels, and merged small 

parcels (< 10 ha) that share a boundary with an adjacent property to compensate for slight 

misalignment between image sets. Next, we performed the pixel-based classification using 

decision rules developed in the conditional inference analysis described above. The decision 

thresholds differed between image sets (1938, 1999, 2015). We also developed a mask layer 

combining shadows, water bodies, and building footprints within OSMP properties. Because 

these features can be misclassified as forest, we excluded them from later analysis of all image 
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sets. For unmasked portions of Boulder OSMP properties, we then calculated the proportion of 

forest cover as the number of forest pixels out of the total number of pixels within a parcel.  

Results 

Repeat Landscape Photos: Completed – We located and repeated over two dozen 

historical landscape photos from Boulder OSMP properties (Figure 2, Table 2). Of these, we 

have selected the 20 historical images most suitable for future use by park staff and open space 

offices, and have acquired high-resolution copies of these images from library collections. At 

each photo point we collected multiple images, thus the final presentation of our results includes 

31 image pairs (from 20 unique historical photos). We will provide lower-resolution (Appendix 

A) and higher-resolution copies of historical and contemporary photos, and point locations and 

metadata for each repeat photo point to OSMP staff. The licenses for use of these images are 

held by the Boulder Public Library and Denver Public Library, but are open for non-commercial 

use and outreach purposes. 

Our results are largely compatible with previous findings (Veblen and Lorenz 1986, 

1991), showing 20th century encroachment of native conifers in some low-elevation sites and 

those adjacent to grasslands, as well as an increase in forest cover within the city limits of 

Boulder due to planting of non-native deciduous species. Broad-scale development and 

urbanization is visible in many of the images, but some areas have changed little since 1900, 

providing an interesting contrast. Quantitative methods have been developed to compare repeat 

oblique-angle photography to analyze landscape change (Rhemtulla et al. 2002), and in the 

future, we will assess the potential of these methods for use with these image pairs. 

Classify Aerial Photos and Compare to Recent Change: In Progress – Following acquisition of 

imagery (Figure 3), we developed two classification methods (one implemented, one proposed) 
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to analyze changes in forest extent in the NFR. Our pixel-based estimates of forest cover suggest 

moderate increases in forest cover from 1938 – 2015. Total forest cover on the OSMP properties 

included in the analysis increased from 31.07 to 40.33 percent (Table 3), but variability is 

evident across much of the study area (Figures 4-5). The most notable areas of increase were the 

forest-grassland ecotone in South Boulder, the slopes of Mt. Sanitas, and the foothills south of 

Boulder Canyon. Results varied across OSMP properties, with some parcels showing substantial 

increases, and others showing substantial declines. Upon visual inspection, the property showing 

the greatest declines in forest cover (ERNI) had a darker tone than much of the 1938 imagery, 

and forest was overclassified in this area in 1938. Thus, forest declines in this area are likely 

overestimated. 

The pixel-based classification method has shown promise, with user’s accuracy for the 

forest class at 80%. However, producer’s accuracy is lower (58%), primarily due to many 

shadows and water bodies being falsely identified as forest. However, these features represent a 

low proportion of the landscape, and the incorporation of DEMs and GIS layers with information 

on water bodies is likely to reduce these effects. The kappa statistic for the 1938 imagery was 

0.795, suggesting substantial agreement between the observed and expected classes of validation 

pixels. Users accuracies for forests in the 2015 imagery are higher (95%), and local variance 

appeared to be more helpful in developing these classifications than in the 1938 imagery (not 

shown). Kappa values for the 2015 imagery were even higher than the 1938 dataset at 0.835. 

Grasslands and bare ground could be effectively distinguished in all imagery sets (>=85% user’s 

and producer’s accuracies in all image sets). The 2015 NAIP classification was closely aligned 

with the results of LiDAR canopy segmentation, where LiDAR predicted 41.92 percent forest 

cover across the OSMP properties analyzed and NAIP classification predicted 40.33 percent 
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canopy cover. While accuracies for this classification are high, there are notable errors in 

classification on highly illuminated and dark hill slopes. The forest cover type tended towards 

overclassification on north-facing slopes and underclassification on south-facing slopes.  

These results are presented with a couple caveats. First, we assessed classification 

accuracy with a subjectively selected set of validation pixels that are clear examples of each class 

(forest, non-forest, and shadow/water). Future accuracy assessments will require a greater 

number of validation pixels in each class, and randomly selected sets of pixels following 

classification. Thus, our estimated accuracies may be higher than those demonstrated in the 

actual classification. Secondly, we have not yet incorporated local minima to identify individual 

trees surrounded by grass or lighter-colored land surfaces, and this is likely to improve the 

classification in areas with sparse forest cover. Our proposed classification that incorporates 

DEMs and image segmentation is likely to account for tonal differences between image frames, 

yielding a more consistent classification across the study area, and accounting for illumination 

differences on north and south-facing aspects and between image frames (Figure 6, Figure 7). 

The end result of this classification will yield high-resolution estimates of changes in percent 

forest cover that can be incorporated into a land-management framework. The dataset will also 

be useful to other researchers studying urbanization and changes in land cover across the region. 

Conclusions 

 Forests in the NFR have experienced substantial change over the last two centuries due to 

changes in climate, patterns of disturbance, and human land use. Locally, OSMP properties have 

experienced slight increases in forest cover between 1938 and 2015. Sherriff et al. (2014) suggest 

that areas under 2260m are those in which restoration and fuels mitigation are most likely to be 

convergent goals, and 87.64% of the OSMP properties analyzed meet this criteria. In short, 
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thinning and burning may simultaneously accomplish the objectives of forest restoration and 

fuels reduction on the majority of OSMP properties. However, the increases in forest cover are 

generally modest (<10%), and fuel treatments must be weighed with several other management 

objectives - notably recreation, wildlife, climate resilience – as well as financial considerations. 

In addition, certain areas have experienced more dramatic change, and may be a higher priority 

than other sites within the jurisdiction of OSMP. 

The proposed classification methods described herein demonstrate promise with all sets 

of imagery (1938, 1999, 2015), but steps remain before this analysis can provide final results 

across the study area. Upon completion, this dataset will prove useful to scientists and managers 

in the NFR when developing plans for forest restoration and fire mitigation treatments, and in 

developing an improved understanding of the drivers of landscape change. Repeat landscape 

photos provide a supplement to previous work in the NFR, and we will provide digital copies of 

20 sets of repeat landscape photos to Boulder OSMP for use in interpretation. The licenses for 

use of these images are held by the Boulder Public Library, and Denver Public Library, but are 

open to non-commercial use and outreach. 

Status of Work, and Next Steps 

Deliverable Status Description Delivery  

Final Report and 
Photos to OSMP 

Partially 
Complete 

We have provided historical and contemporary 
repeat photographs to OSMP officials. Prints of 
these images can be made upon request. The 
aerial photography component is partially 
complete. 

Summer 
2017 

Presentation at 
Annual Research 
Symposium 

On Track Oral presentation of research findings at the 
annual research symposium. Provides 
outreach to the community and to local 
managers. 

Feb./Mar. 
2017 

Peer-reviewed 
Manuscript 

On Track From this project, we will produce at least one 
manuscript for publication in a peer-reviewed 
journal 

Dec. 2017 



 16 

 The aerial photography component to this project is partially complete, and the goals laid 

out within this report can be realistically accomplished by Summer 2017. The steps to 

completion are as follows: 

1) Complete image processing and mosaicking – Each frame in a given flight path has been 

combined into a larger mosaic (n = 11), and these mosaics must now be aligned with one 

another and tonally corrected prior to final classification of the study area (Figure 1, Figure 

5). This process is ongoing, and we recently received a small amount of funding from the 

University of Colorado Boulder to provide salary for undergraduate assistance on the project 

during this academic year. 

2) Perform image classification – We have calculated local variance and local minima within 

each image (n = 308) prior to mosaicking, thus this portion of pre-processing for the project 

is complete. Following creation of the 1938 mosaic, we will perform image segmentation to 

identify contiguous areas with similar values in brightness, variance, and context (local 

minima; Figure 6). We will also perform these operations on 1999 and 2015 imagery at the 

same spatial resolution as the final 1938 mosaic (likely 1.5 m). These imagery sets (1999 and 

2015) have already been acquired and combined into mosaics covering the study area extent. 

Following classification, we will then perform change detection analyses at an aggregated 

scale, where pixel-size of the model will be based on the estimated alignment between 1938, 

1999, and 2015 imagery. We will then pair our findings with stand-level data on fire history 

and tree establishment, or with a model derived from these data, to assess the influence of 

historical fire regime on 20th-century forest change. Lastly, we will use publically available 

GIS data from 2000-2015 to assess the drivers of forest change during this time-period. 
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3) Assess the potential for quantitative analysis using the repeat landscape photos – Rhemtulla 

et al. (2002) outline a method for using landscape photos to quantitatively assess land cover 

change, however their data were located at the exact point of original image capture, and 

closely mimicked the original image collection. Therefore, a quantitative analysis of our 

imagery may not be feasible, still, we will assess the utility of this approach, likely through 

an independent undergraduate research project. 
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Figure 1: Map showing the extent of selected historical (1938, 1940) air photos in the northern 

Front Range, CO. Sites of paired fire scar records and stand age data included in the Sherriff et 

al. (2014) analysis and overlapping with the study area (n = 66) are shown in blue, and county 

perimeters are outlined in grey.  
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Table 1: Description of historical air photo locations and time periods of collection for each of 

the counties included in the study area. 

County 
Number of 

Images 
Time Period 

Boulder 114 May 1938, Oct 1938, Oct 1940 

Clear Creek 1 Oct 1938 

Gilpin 30 Oct 1938 

Jefferson 14 May 1938, Oct 1938, Oct 1940 

Larimer 149 May 1938, Oct 1938, Oct 1940 

All 308   
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Figure 2: Location and direction of repeat photo points overlain on 1938 (left) and 2015 (right) 

aerial imagery 
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Table 2: Overview of repeat photos collected on OSMP properties near Boulder, CO. “Slide 

Number” corresponds to page number in Appendix A. 
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Figure 3: A comparison of 1938 (a), 1999 (b), and 2015 (c) aerial imagery covering Chautauqua 

and the first, second, and third flatirons. 
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Figure 4: Diagram of decision tree classification, results of the conditional inference framework, 

and classification accuracy assessment based on decision-tree classification for high-resolution 

historical air photos collected by the US Forest Service ca. 1938. Nodes with two paths below 

them represent a binary split in the data based on the specified variable and values. N is the 

number of training pixels placed in a terminal node. The “y” vector in each terminal node 

represents the proportion of pixels from each class in this bin, where the first value is forest, the 

second is bare ground, and the third is water/shadow. Variable importance refers to mean 

decrease in classification accuracy when removing a variable from the conditional inference 

model. 

 

 

Confusion matrix for preliminary pixel-
based classification of historical imagery. 
Final classification used the thresholds 
defined above, and the minimum observed 
variance in training pixels of the forest 
class to separate the three cover types. 
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Figure 5: Map of forest change on selected OSMP properties surrounding Boulder, CO. 

Properties were included in the analysis if: (i) they included visible forest cover in at least one 

time period, and (ii) if 1938 imagery was available for a given parcel. Percent change is 

calculated as proportion of forest cover in the parcel in 2015 minus the proportion of forest cover 

in 1938. 
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Table 3: Overview of selected OSMP properties and results of pixel-based forest classification 

for each time period -1938 and 2015. 

 

Property Name 
Percent 

Forest 1938 
Percent 

Forest 2015 
Forest 

Change 

AMERICAN PARK 64.54 78.54 14.00 

ANDERSON-DEBACKER 29.28 58.82 29.54 

AUSTIN - RUSSELL 30.60 47.04 16.44 

BAIRD 42.52 63.29 20.77 

BARUT (THE MATRON) 59.93 56.18 -3.75 

BEECH - West 10.45 11.25 0.79 

BEECH, COUNTY 5.18 4.52 -0.66 

Benedictine Abbey 16.98 42.24 25.26 

BERGHEIM - WOOD 40.36 57.67 17.31 

BOULDER GREENS VENTURE 11.37 9.78 -1.59 

BOULDER MEMORIAL HOSPITAL 16.89 17.18 0.29 

BUCKINGHAM PARK 25.35 33.49 8.14 

BUFFALO PARK CE 52.22 76.32 24.10 

BUSSE 22.06 57.89 35.83 

CAMPBELL 65.81 63.54 -2.28 

CULBERSON 28.69 68.32 39.62 

DOVER-BLACKER 9.93 0.38 -9.55 

DUNN  I 7.75 20.04 12.28 

DUNN  II 8.62 6.07 -2.55 

ELDORADO MOUNTAIN (CONDA 
QUARRY) 43.37 68.63 25.26 

ENCHANTED MESA 38.18 55.48 17.31 

ERNI 43.30 8.92 -34.38 

FLATIRONS VISTA 3.56 15.08 11.52 

FOOTHILLS BUSINESS PARK 1.94 0.19 -1.75 

FOOTHILLS BUSINESS PARK  CE 2.24 1.50 -0.73 

FRASIER FARMS 21.27 43.40 22.13 

HEDGECOCK 32.30 19.32 -12.98 

HOGAN RANCH - (CE) 15.33 11.99 -3.35 

HOLMES 18.21 33.70 15.49 

JEWEL MOUNTAIN LAND CO. 3.30 2.28 -1.02 

JODER II 9.27 6.11 -3.16 

KASSLER 27.15 51.04 23.89 

KINEMAN 29.28 55.47 26.18 

LAINGOR 41.37 75.16 33.79 
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LINDSAY - West 32.79 46.21 13.42 

LINDSAY / JEFFCO 21.74 51.39 29.65 

MANN - West 4.41 0.26 -4.15 

MASSEY / QUARTER CIRCLE V 79.71 55.22 -24.48 

McCANN, G - North 22.63 27.15 4.52 

MOORE FAMILY 26.83 26.53 -0.30 

MOORE, MARY  I 12.44 1.60 -10.84 

N. I. S. T. CE 10.58 17.18 6.60 

NCAR PARK 26.60 41.64 15.04 

NEJEZCHLEB 17.39 19.30 1.90 

PARSONS 6.73 2.41 -4.31 

RICE BE 20.55 56.22 35.66 

RUDD - West 6.13 4.86 -1.26 

SCHNEIDER 4.98 1.64 -3.34 

SCHNELL I 50.39 73.25 22.86 

SCHNELL II 51.97 68.41 16.44 

SHANAHAN, SOUTH CE 30.19 2.70 -27.50 

SIGNORELLA CE 64.90 55.34 -9.56 

STATE PATENT - PANORAMA 30.00 42.98 12.98 

STENGEL  I 4.44 10.69 6.25 

STENGEL II 18.66 35.76 17.09 

STOY 33.60 51.84 18.24 

THOMAS, HOGAN, PARRISH (T.H.P.) - 
West 40.66 12.24 -28.42 

TRAM HILL 39.52 71.52 32.01 

US PATENT - BEAR PEAK 56.19 61.29 5.10 

US PATENT - GREEN MTN. 50.29 64.86 14.57 

VAN VLEET / JEFFERSON COUNTY 7.19 5.29 -1.90 

WELLS - East 30.10 47.28 17.18 

WELLS - West 48.34 65.23 16.90 

WITTEMYER  I - North 40.49 63.08 22.58 

WONDERLAND HILL DEV CORP  I 29.81 8.43 -21.38 

Total 31.07 40.33 9.25 
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Figure 6: Some of the issues with merging adjacent air photos into a single photo mosaic. (a) 

Visible tonal differences at scene edges following mosaicking in the eastern flight line, and 

uncorrected offset between adjacent flight lines (b). Frame (b) will ultimately look like (a), and 

the full mosaic will then be tonally corrected in Adobe Photoshop CS6. However, image 

segmentation also corrects for some of these tonal differences in the classification process. 
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Figure 7: An overview of proposed image classification techniques in areas of sparse (left) and 

dense (right) forest cover. Original imagery (a, b) is processed using an expanding window 

method to identify dark pixels surrounded by lighter ones (c, d), and describe the variance 

around each pixel (e, f). Images are then segmented to identify areas of relatively similar 

appearance. This segmentation can be completed solely based on image brightness (g, h), or 

based on image brightness, locally dark areas, and variance combined (i, j). These segmented 

areas can then be classified using machine learning techniques such as random forests or support 

vector machines. 


