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 Abstract 
Waterbodies in and near lands managed by Boulder Open Space and Mountain Parks (OSMP) are favored 

destinations for recreationists, wildlife watchers, and outdoor enthusiasts. In this context, the emergence of 

harmful algal blooms as a key water quality concern in Colorado’s Front Range presents a variety of scientific and 

management challenges. Prime among these is how to effectively monitor algal blooms over large spatial extents 

and place current algal bloom data into a historic context. In situ water samples currently offer the only pathway 

through which algal species and toxicity can be identified, but such sampling cannot be applied retrospectively 

and it may miss the spatiotemporal variability inherent to algal blooms. Remote sensing, while it has drawbacks, 

offers a complementary approach whereby we can use satellite imagery to track the historical prevalence of algal 

blooms over a large number of waterbodies. In this work, we apply two different algorithms to 31 years (1990–

2020) of reflectance data from five satellite platforms to identify waterbodies in Boulder County that may be 

experiencing algal blooms and cyanobacterial outbreaks. We also use these data to track whether algal bloom 

prevalence has changed over time. Overall, we found that algal blooms identified with remote sensing data 

express marked spatial variability in the waterbodies of Boulder County and that potential cyanobacterial 

outbreaks are relatively rare compared to other algae. The number of potential cyanobacterial blooms varies from 

year to year and blooms were not detected in all waterbodies. Satellite imagery also suggest algal bloom 

prevalence has increased in the previous 11 years (2010–2020) relative to previous levels and that potential 

cyanobacterial outbreaks reached a peak during 2019. These results indicate the importance of continued 

monitoring over the coming years in Boulder OSMP waterbodies.  

 Introduction 
Although algae are a natural and important component of many aquatic ecosystems (Van Den Hoek et al., 1995), 

rapid growth may produce harmful algal blooms that pose various public health and water quality challenges. 

Overly dense algal blooms may reduce light levels within the water column, clog fish gills, or reduce water oxygen 

levels (Lake Erie Algae, n.d.). Similarly, blooms dominated by cyanobacteria, also known as blue-green algae, 

can pose serious human health risks, such as skin irritation, gastroenteritis, and neurological issues (Carmichael, 

2001). Toxic strains of cyanobacteria can also be lethal to dogs (Edwards et al., 1992), livestock (Beasley et al., 

1989), deer (Handeland & Østensvik, 2010), and fish (Malbrouck & Kestemont, 2006). In addition, algal blooms 

can reduce drinking water quality (Falconer, 1999) and impair recreational experiences (Carvalho et al., 2013; 

Pilotto et al., 1997). Harmful algal blooms have occurred in inland waterbodies throughout much of the United 

States, most notably in the Great Lakes region (Michalak et al., 2013). Recent news reports and testing results 

indicate Colorado waterbodies have not been immune to harmful algal blooms and other water quality issues 

(Brown, 2020; Colorado Department of Public Health and Environment, 2020; Colorado Department of Public 

Health and Environment, 2020). 

The State of Colorado’s in situ testing data show the presence of toxic strains of cyanobacteria (i.e., blue-green 

algae) along the Front Range in waterbodies such as Barr Lake, Sloan’s Lake, and Bear Creek Reservoir, among 

others (Colorado Department of Public Health and Environment, 2020). In 2019, residents were warned that algal 

blooms in Boulder’s Wonderland Lake and Thunderbird Lake may have contained cyanobacteria species (City of 

Boulder, 2019). This is in addition to previous water quality issues within Boulder County, such as temporary 

closings of Boulder Reservoir due to heightened bacteria levels and a 2018 fish die-off in Lagerman Reservoir 

(Boulder County, 2019). These phenomena, plus the previously detailed risks to human and natural systems, 

suggest that tracking water quality is and will continue to be an important management consideration for Boulder 

County land managers. From a management perspective, one approach is to monitor waterbodies for algal 

blooms, cyanobacteria, and other water quality parameters. Typically, such monitoring efforts have focused on 

discrete in situ samples that evaluate water quality at a given location and point in time. Such an approach 

overlooks the inherent spatiotemporal variability of algal blooms, the scope of sampling may be limited by staff 

time and financial resources, and sampling cannot be performed retrospectively. 
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A complementary approach to manual observations is the use of satellite remote sensing data to track the 

occurrences of algal blooms and cyanobacteria (Jia et al., 2019). Over the past two decades researchers have 

developed and refined algorithms to monitor algal blooms in inland and coastal waterbodies (Clark et al., 2017; 

Hu, 2009; Kudela et al., 2015; Oyama et al., 2015; Vincent et al., 2004). These algorithms rely on the differing 

reflectance properties of clear water versus algae and other vegetation, and they range from the simple to the 

complex. The recent emergence of open-source software solutions for the rapid mosaicking, processing, and 

analysis of freely available remote sensing data makes such analyses more time- and cost-effective than ever 

(Gorelick et al., 2017). Furthermore, the repeatability of such analyses, along with the considerable spatial and 

temporal coverage of the remotely sensed data, allows for the testing of various algorithms and the creation of 

long-term datasets of algal bloom frequency. 

In this work, we will answer the following research questions using a processed time series of high-resolution 

remote sensing data: 

• Question 1: Where have algal blooms and cyanobacterial outbreaks historically occurred in 

Boulder County? Approach: Analyze optical remote sensing scenes from the Landsat and Sentinel 

satellites to quantify the proportion of observations with potential blooms and outbreaks. 

• Question 2: Has the prevalence of algal blooms and cyanobacterial outbreaks changed over time 

in Boulder County? Approach: Analyze long-term output from Landsat 5 and 7 to assess differences. 

Along with answering the two above research questions, we will also present case studies of eight waterbodies in 

2019 to discuss spatial patterning of algal blooms and cyanobacteria. The work presented herein stands to benefit 

Boulder OSMP, other Front Range municipalities, and the larger scientific community. Fishing, boating, dog-

walking, birdwatching, and other recreational pursuits are important to residents of and visitors to Boulder County. 

However, the use of waterbodies can be limited by water quality issues such as those related to algal blooms. 

Thus, a project that identifies where and when algal blooms have historically occurred (Q1) and evaluates 

changes over time (Q2) will allow for the development of targeted management (e.g., signage, mitigation 

and monitoring). As an example, previous research in Vermont’s Lake Champlain has informed management 

strategies on nutrient loading and recreational use of waterbodies (Smyth et al., 2009). From a scientific 

perspective, the algorithms developed to track algal blooms have been tested primarily in large waterbodies with 

frequent outbreaks, such as Lake Erie. Our work would therefore provide an opportunity to test these algorithms 

in small, inland waterbodies, which could both improve management on OSMP lands and enable improved 

scientific understanding of where and why algal blooms occur.  

 Methods 

 Remote sensing fundamentals 

Remote sensing is the process by which features and phenomena are observed from a distance, often by 

airborne or spaceborne sensors. The work detailed in this report relies on the differences in spectral reflectance 

between clear water and algae as recorded by several satellite platforms. Spectral reflectance is the proportion of 

radiation reflected from the earth’s surface at a given wavelength, or range of wavelengths, in the electromagnetic 

spectrum (Figure 1). Clear water absorbs most incident radiation, producing low reflectance at most wavelengths. 

Algae and aquatic vegetation also express low reflectance values in the visible portion of the electromagnetic 

spectrum but are highly reflective in the near infrared (i.e., wavelengths slightly longer than visible light). At these 

longer wavelengths, the reflectance of water in the near infrared approaches zero, meaning it absorbs nearly all 

incoming near infrared radiation. At low concentrations it is difficult to identify algae presence/absence as the 

spectral signal recorded by the satellite sensor resembles that of clear water; however, as algae prevalence 

increases, the signal comes to resemble that of algae only (Oyama et al., 2015). 
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Figure 1. The electromagnetic spectrum with zoomed-in view of the visible portion of the spectrum (V = violet, B = blue, G = 
green, Y = yellow, O = orange, R = red). Image credit: Philip Ronan, Gringer, CC BY-SA 3.0, via Wikimedia Commons. 

In this context, it appears straightforward to identify algal blooms via remote sensing. Complicating matters is the 
fact that optical satellite sensors do not measure the full electromagnetic spectrum but rather discrete 
wavelength ranges, referred to as bands. We therefore do not get the full picture from a satellite measurement. To 
circumvent this shortcoming, researchers have developed a set of algorithms designed to differentiate algal 
blooms from open water based on differences in spectral reflectance over different bands. Although many such 
algorithms exist (examples shown in Table 1), our preliminary analysis indicated two promising candidates: 1) the 
near infrared to red (NIR:Red) band ratio to estimate algal boom presence (Eq. 1) and 2) the floating algae index 
(FAI) combined with the normalized difference water index (NDWI) to estimate areas with potential 
cyanobacterial blooms (Eqs. 2 and 3). 

 

𝑁𝐼𝑅: 𝑅𝑒𝑑 =
𝑅𝑁𝐼𝑅

𝑅𝑅𝑒𝑑
 (Eq. 1) 

 

𝐹𝐴𝐼 = 𝑅𝑁𝐼𝑅 − [𝑅𝑅𝑒𝑑 + (𝑅𝑆𝑊𝐼𝑅1 − 𝑅𝑅𝑒𝑑) ×
(865 − 655)

(1610 − 655)
] 

(Eq. 2) 

 

𝑁𝐷𝑊𝐼 =
(𝑅𝑁𝐼𝑅  − 𝑅𝑆𝑊𝐼𝑅1) 

(𝑅𝑁𝐼𝑅  + 𝑅𝑆𝑊𝐼𝑅1) 
 (Eq. 3) 

In the above equations, 𝑅 represents the top of atmosphere reflectance (0–1) for a given band (e.g., 𝑅𝑁𝐼𝑅  is the 
reflectance value for the NIR band).  

Table 1. Example remote sensing algorithms based on differences in spectral reflectance between algae and clear water. 
Results in this work rely on the NIR:Red band ratio and the FAI combined with NDWI.  

Algorithm Source(s) 

Floating Algae Index (Hu, 2009; Zong et al., 2019) 
Normalized Difference Water Index (Xu, 2006) 
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Normalized Difference Vegetation Index (Kahru et al., 1993) 

Floating Vegetation Index (Gao & Li, 2018) 

Phycocyanin Content (Vincent et al., 2004) 

Spectral band thresholds (Oyama et al., 2015) 

Band ratios (Tebbs et al., 2013) 

We chose the NIR:Red ratio as previous work has shown it expresses a statistically significant and linear 
relationship to chlorophyll-a, an indicator of algal bloom presence and magnitude. In general, the NIR:Red ratio 
increases as the concentration of chlorophyll-a increases in a given body of water. For our analyses, we chose a 
NIR:Red threshold of 1, where all values equal to or greater than 1 were indicative of an algal bloom. The 
algorithm based on FAI and NDWI is slightly more complex, employing two thresholds in a rule-based scheme to 
estimate the presence of a cyanobacterial bloom. First, the FAI differentiates between clear water and algae using 
a threshold of 0.05. FAI values greater than or equal to 0.05 are considered algae, while those below are 
considered to be clear water. Next, the NDWI is used to partition algae into cyanobacteria and non-cyanobacteria 
blooms using a threshold of 0.63. Values greater than or equal to this threshold are considered probable bacterial 
blooms while those below are not. Here, it is important to underline that both of our chosen methods are 
empirical and do not measure the concentration of algal blooms directly. Remote sensing is a tool that offers 
many advantages, but it cannot prove the harmful nature of an inferred algal bloom. Toxicity can only be 
confirmed via in situ sampling and lab testing. 

For this project, we applied our selected algorithms to top of atmosphere reflectance data from 5 different 
satellite platforms, Landsats 5, 7, and 8, and Sentinels 2A and 2B (Table 2). The Landsat series of satellites is a 
joint venture between the United States Geological Survey (USGS) and the National Aeronautics and Space 
Administration (NASA). Each Landsat has a nominal spatial resolution of 30 m and a temporal resolution of 16 
days. This means every pixel in Landsat imagery for our bands of interest covers a 30 m by 30 m area and each 
pixel is observed every 16 days. The Sentinel 2 satellites, which are part of the European Space Agency’s (ESA) 
Copernicus Program, have both a higher spatial and temporal resolution than Landsat. This enables a more 
nuanced examination of algal bloom patterns; however, later launch dates mean they are currently unsuitable for 
long-term analyses. All satellites, except for Landsat 5, are still in operation. Additionally, we will refer to Sentinel 
2A and 2B collectively as Sentinel 2 in the remainder of this report. 

Table 2. Technical specifications for the satellite platforms used in this project. 

Satellite Spatial 
Resolution* (m) 

Temporal 
Resolution‡ (d) 

Spectral Range (nm)† Launch Date End Date 

Landsat 5 30 16 450–12500 (8 bands) 1984-03-01 2013-06-05 

Landsat 7 30 16 450–12500 (8 bands) 1999-04-15 NA 

Landsat 8§ 30 16 433–12500 (11 bands) 2013-02-11 NA 

Sentinel 2A 10–20 10 443–2200 (13 bands) 2015-06-23 NA 

Sentinel 2B 10–20 10 443–2190 (13 bands) 2017-03-07 NA 
*Spatial resolution refers to the length of one side of a remotely sensed pixel. For Landsat, the pixel size for our bands of 

interest is 30 m X 30 m, or 900 m2. 
‡Temporal resolution is the number of days between satellite overpasses. 
†Spectral range is the wavelengths of electromagnetic radiation that the sensor can detect. Landsat 5, 7, and 8 have a 

thermal infrared band at long wavelengths (> 10000 nm), but most of bands detect wavelengths between ~450 nm and 

~2000 nm. 
§Processed Landsat 8 time series and imagery data are included in our dataset, but are not detailed in the results section as 

they cover a shorter period of time than Landsat 7 and do not have the high resolution of Sentinel 2. 

 Data processing in Google Earth Engine 

The majority of the remote sensing data processing for this project was performed using the open-source Google 

Earth Engine platform (Gorelick et al., 2017). Google Earth Engine simplifies much of the process of getting from 

raw satellite data to analysis-ready products through recent advances in cloud computing, allowing researchers to 
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create time series of data from multiple satellites without having to download a single image. For us, it was 

important to understand how algal bloom prevalence has changed over time and to evaluate spatial patterns 

using high-resolution imagery over the past several years. To that end, we developed two types of scripts, one 

that processed the data into time series output at selected locations and another that produced maps showing the 

annual prevalence of algal blooms. The two scripts shared the following steps in common: 

 Select and load top of atmosphere reflectance data for each sensor into a Google Earth Engine 
ImageCollection object 

 Filter each imagery dataset to the bounds of Boulder County 

 Redefine bands for the individual sensors (Table 3 through Table 5) to a common naming convention 

 Remove cloudy pixels based on internal cloud mask algorithms 

 Define algorithms and apply them to each image in the collection  

Following step 5, the processing protocol diverged for the time series and spatial analyses. For the former, we 

loaded a selection of sampling points from within 71 waterbodies in Boulder County and then extracted each 

reflectance and algorithm value for the entire cloud- free dataset. The reasoning for this was threefold: 1) create 

easily interpretable time series plots of algal bloom presence and magnitude; 2) account for the spatial variability 

of algal blooms within waterbodies; and 3) mitigate edge effects of pixels that include both water and terrestrial 

vegetation. Regarding the last item, we classified each sampling point as Edge, Near Edge, or Open Water. 

Edge, in this context, refers to the boundary between the waterbody and adjacent land or the internal boundary of 

dense, emergent aquatic vegetation and water. Pixels with the Edge classification share an approximately equal 

mix of land and water, while Near Edge pixels are primarily water but may include small bits of land or emergent 

vegetation. In contrast, Open Water points are at least 30 m away from the water-land boundary and should not 

include any edge effects. Boulder County does have several manmade waterbodies whose water surface area 

varies markedly throughout the year. In these cases, we identified most sampling points as Near Edge to account 

for these fluctuations (i.e., pixel may sometimes be Open Water and other times Edge). 

For the spatial analyses, we focused our attention on 2019, the year that had the greatest number of 

cyanobacterial blooms according to the FAI and NDWI algorithm. After completing step 5 in the process detailed 

above, we created two separate functions that counted the number of times each Sentinel 2 pixel exceeded the 

NIR:Red threshold and the rule-based, dual thresholds of the FAI and NDWI algorithm. We limited the counting to 

occur between May and October of 2019, the main period of algal growth and senescence. Once the functions 

had been applied, we exported the images and used QGIS to mask the output to our waterbodies of interest. To 

note, the hot, dry summer of 2020 may have been conducive to algal blooms in Boulder County; however, the 

drought conditions also corresponded with frequent, dense wildfire smoke. As of now, there is little understanding 

of how wildfire smoke influences remote sensing retrievals of algal blooms, meaning smoke-obscured sensor 

retrievals from 2020 may not be telling the full story. 

Table 3. Landsat 5 and 7 bands along with their associated spectral ranges and spatial resolutions. 

Band Name Spectral Range (nm) Spatial Resolution (m) 

1 Blue 450–520 30 

2 Green 520–600 30 

3 Red 630–690 30 

4 NIR 770–900 30 

5 SWIR1 1550–7500 30 

6 TIR 10400–12500 30 

7 SWIR2 2090–2350 30 

8 Panchromatic 520–900 15 
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Table 4. Landsat 8  bands along with their associated spectral ranges and spatial resolutions. 

Band Name Spectral Range (nm) Spatial Resolution (m) 

1 Blue-Violet 433–453 30 
2 Blue 450–515 30 

3 Green 525–600 30 

4 Red 630–680 30 

5 NIR 845–885 30 

6 SWIR1 1560–1660 30 

7 SWIR2 2100–2300 30 
8 Panchromatic 500–680 15 

9 Cloud 1360–1390 30 

10 TIR1 10600–11200 100 

11 TIR2 11500–12500 100 

 

Table 5. Sentinel 2 bands. Note: there are slight differences, typically less than 10 nm, between Sentinel 2A and 2B 
(https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric). 

Band Name Spectral Range (nm) Spatial Resolution (m) 

1 Coastal Aerosol 432–453 60 

2 Blue 458–523 10 

3 Green 543–578 10 

4 Red 650–680 10 
5 Red Edge 1 698–713 20 

6 Red Edge 2 733–748 20 

7 Red Edge 3 773–793 20 

8 NIR 785–899 10 

8a Narrow NIR 855–875 20 

9 Water Vapor 935–955 60 
10 SWIR1 1358–1389 60 

11 SWIR2* 1565–1655 20 

12 SWIR3 2100–2280 20 
*SWIR2 for Sentinel 2 corresponds to Landsat SWIR1 when used in the NDWI algorithm (Eq. 3). 

 Additional analyses in R and QGIS 

Our final processing step in Google Earth Engine was to export CSV files for each sensor and observation point. 

We then used the open-source R programming language to aggregate the data from the five sensors into a single 

time series dataset. In R, we summarized data from all observations between May and October to compute 

annual prevalence of potential algal blooms and cyanobacteria outbreaks using the NIR:Red and FAI plus NDWI 

thresholds detailed above at each waterbody for each sampling point type. We next evaluated how annual 

prevalence has changed over time using data from Landsat 5 and 7, the two sensors with the longest data 

records. Then, to illustrate how potential changes manifest at a given point, we averaged daily data from a single 

location at Wonderland Lake for Landsat 5 and 7. The plotted data from this analysis show how the NIR:Red ratio 

increases in magnitude for the latter part of our study period. Finally, we used the open-source QGIS program to 

mask out land areas from our Google Earth Engine spatial analyses for 2019. We then mapped the number of 

NIR:Red and FAI plus NDWI threshold exceedances for eight Boulder County waterbodies. 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/resolutions/radiometric
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 Results 

 Algal bloom prevalence in Boulder County 

Examining all study years and sensors at our sampling points, we found algae to be prevalent in many Boulder 

County waterbodies as based on a NIR:Red threshold of 1.0 (Figure 2). Edge points express the greatest 

percentage of observations exceeding the threshold, which is to be expected given the overlap between the water 

and land within each remote sensing pixel. Near Edge points, which may include some land parts and/or 

emergent vegetation, also exhibit high percentages, but to a lesser degree than Edge pixels. These sampling 

points may be detecting algal blooms as each sampled pixel includes a large portion of water. Open Water 

sampling points should be free of edge effects, making them the most reliable type for determining algal bloom 

prevalence. These results indicate the incidence of algal blooms varies markedly over Boulder County. 

Waterbodies expressing the greatest likely prevalence of algal blooms include B.L.I.P. II Pond, Cowdrey 

Reservoir No. 2, Suitts Pond, Caribou Pond No. 4, Mesa Reservoir near Boulder Valley Ranch, Sombrero Marsh, 

and Caribou Pond No. 2 (all with Open Water NIR:Red threshold exceedances greater than 80%). In contrast, 12 

waterbodies have NIR:Red exceedances less than 10%, including McIntosh Lake, Left Hand Park Reservoir, 

Marshall Lake, Boulder Reservoir, Davis Reservoir 1, and Left Hand Valley Reservoir. 

 

Figure 2. The percent of Edge (top), Near Edge (middle) and Open Water (top) observations exceeding the NIR:Red threshold of 
1.0 between May and October across all study years and sensors. Note: Empty spaces in the bar plot mean that waterbody did 

not have a sampling point of that type (i.e., not all waterbodies have all sampling point types). 

When examining sampling points that exceed both the FAI threshold of 0.05 and the NDWI threshold of 0.63, we 
see the prevalence of possible cyanobacterial blooms in Boulder County is quite low, typically less than 2% for 
most waterbodies (Figure 3). It is also notable that the differences between Edge, Near Edge, and Open Water 
sampling points are less pronounced in comparison to the NIR:Red results above. This may be related to the FAI 
and NDWI algorithm being more complex, whereby emergent or terrestrial vegetation may pass the FAI threshold 
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but then fail the NDWI threshold. Overall, Sombrero Marsh expressed the greatest prevalence of Open Water 
observations with possible cyanobacterial blooms at 10.9%. This is more than three times greater than the next 
greatest value, which was 3.1% at Teller Lake No. 5. The only other waterbodies with Open Water possible 
cyanobacterial bloom prevalence values greater than 1.0% are Cowdrey Draw Reservoir No. 2, Mesa Reservoir 
near Boulder Valley Ranch, Sawhill No. 1, Caribou Pond No. 4, and Suitts 1. These data suggest cyanobacterial 
blooms are markedly less common in Boulder County when compared to other algal bloom types. 

 

Figure 3. The percent of Edge (top), Near Edge (middle) and Open Water (top) observations exceeding the dual FAI and NDWI 
thresholds of 0.05 and 0.63 between May and October across all study years and sensors. Note: Empty spaces in the bar plot 
mean that waterbody did not have a sampling point of that type (i.e., not all waterbodies have all sampling point types). 

 Changes in algal bloom prevalence over time 

Using a NIR:Red threshold of 1, we found that annual algal bloom prevalence increased over time in our study 

area when examining output from the two long-term sensors, Landsat 5 and 7 (Figure 4). The percentage of 

observations exceeding the NIR:Red threshold stayed relatively flat across the Landsat 5 period of record, while 

increasing during the later Landsat 7 period. Notably this pattern occurred for each of our sampling point types: 

Edge, Near Edge, and Open Water, suggesting increasing greenness regardless of the amount of water and land 

in a given pixel. From the first half of the Landsat 7 record (1999–2009) to the second half (2010–2020), NIR:Red 

exceedances increased from 88.2% to 90.9%, 67.3% to 73.9%, and 38.4% to 43.2% for Edge, Near Edge, and 

Open Water points, respectively. Open Water had the greatest relative increase of 12.5% with Near Edge slightly 

less at 9.8% and Edge markedly lower at 3.1%. All observation point types had their largest percentage of 

observations over the NIR:Red threshold during the 2018 drought year. 
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Figure 4. The proportion of edge, near-edge, and open-water observations with a NIR:Red equal to or greater than 1 in a given 
year between May and October for both the Landsat 5 and 7 sensors. 

To illustrate what this phenomenon looks like at a single location, Figure 5 below shows the 10-day moving 
average of the NIR:Red ratio for all observations using Landsat 5 and 7 for the Near Edge pixel near the peninsula 
at Wonderland Lake. Here, the values from each sensor are averaged over their entire record and then we apply a 
10-day moving average filter to smooth the data. This plot indicates the NIR:Red ratio increases earlier in the year, 
reaches a higher maximum, and stays higher for longer during the later period of record for Landsat 7 as 
compared to Landsat 5. This suggests algal blooms may be occurring earlier, lasting longer, and being more 
concentrated. 
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Figure 5. A 10-day moving average of the NIR:Red ratio at a Near Edge sampling point near the peninsula at Wonderland Lake 
for Landsat 5 and 7. 

Possible cyanobacterial blooms, as indicated by exceedances over the FAI and NDWI thresholds, expressed a 
different temporal pattern than algal blooms in general. Figure 6 shows that total exceedances are typically low, 
between 0.1% and 0.5% in most years. There were no obvious temporal trends as seen in the NIR:Red 
exceedances, with the exception being the pronounced spike in 2019. In this year, the Edge and Near Edge 
sampling points recorded 2.1% and 2.0%, respectively, observations over the FAI and NDWI thresholds, providing 
a near-fourfold increase over their previous high values. The 2019 value for Open Water was 1.0%, which was less 
than its record of 1.4% in 1999. These data are consistent with Figure 3, showing low prevalence of probable 
cyanobacterial blooms in Boulder County.  
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Figure 6. The proportion of Edge, Near Edge, and Open Water observations with an FAI > 0.05 and NDWI > 0.63 in a given year 
between May and October for both the Landsat 5 and 7 sensors. 

 Spatial pattern of algal and cyanobacterial blooms in 2019 

In this section, we use high-resolution Sentinel 2 data from 2019 to examine the spatial patterning of probable 

algal and cyanobacterial blooms at a selection of waterbodies in Boulder County. This year was chosen as it had 

the highest incidence of observations over the FAI and NDWI thresholds at Edge and Near Edge pixels, and the 

second highest at Open Water pixels, according to Landsat 7 data (Figure 6). We chose waterbodies for spatial 

analysis in collaboration with Boulder OSMP, eight of which are shown below in alphabetical order: Boulder 

Reservoir, Lagerman Reservoir, Sawhill No. 1, Sombrero Marsh, Teller Lakes No. 1 and 5, Viele Lake, and 

Wonderland Lake. 

Although Boulder Reservoir has experienced intermittent shutdowns as a result of elevated bacterial levels, there 

was limited evidence for algal and cyanobacterial blooms from 2019 in our spatial analysis (Figure 7). Most of the 

NIR:Red exceedances were located around the western fringe of the waterbody and may have resulted from 

emergent vegetation or edge effects. We recorded no probable cyanobacterial blooms. 
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Figure 7. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) from 
April 1st 2019 through October 31st 2019 at Boulder Reservoir. The greater the number of exceedances, the more persistent a 
probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar Technologies, Public 

Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 

In contrast, at Lagerman Reservoir in Longmont, satellite data indicated a potential cyanobacterial bloom and 

algal growth throughout much of the waterbody (Figure 8). Some of the NIR:Red exceedances can be attributed 

to edge effects and emergent vegetation, but exceedances in the open water suggest a potential algal bloom in 

2019.  

 

Figure 8. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) from 
April 1st 2019 through October 31st 2019 at Lagerman Reservoir. The greater the number of exceedances, the more persistent 

a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar Technologies, Public 
Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 
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Similarly, Sawhill No. 1 and Sombrero Marsh present evidence of widespread algal blooms and potential 

cyanobacterial outbreaks in 2019 (Figure 9 and Figure 10). Both waterbodies have emergent vegetation within 

their boundaries, but the areas of open water can be processed independently using the high-resolution Sentinel 

2 data. This indicates algae were likely present at Sawhill No. 1 and Sombrero Marsh, making them candidates 

for future monitoring and testing.  

 

Figure 9. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) from 
April 1st 2019 through October 31st 2019 at Sawhill No. 1. The greater the number of exceedances, the more persistent a 

probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar Technologies, Public 
Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 

 

Figure 10. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) 
from April 1st 2019 through October 31st 2019 at Sombrero Marsh. The greater the number of exceedances, the more 
persistent a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar 

Technologies, Public Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 
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Next up are Teller Lakes No. 1 and 5. Although nearby one another, the two expressed markedly different spatial 

patterns in 2019 (Figure 11 and Figure 12). At Teller Lake No. 1, NIR:Red exceedances were most prevalent near 

the edges, with some potential algae recorded in open water. Cyanobacteria evidence was limited, with several 

pixels showing potential processing artifacts but no consistent outbreak patterns. On the other hand, Teller Lake 

No. 5 exhibited both a possible cyanobacterial bloom and a large number of NIR:Red exceedances in its open 

water areas. However, as a result of emergent vegetation and fluctuating lake levels, care should be taken in 

interpreting these results. Similar to Sombrero Marsh and Sawhill No. 1, these patterns warrant further 

investigation. 

 

Figure 11. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) 
from April 1st 2019 through October 31st 2019 at Teller Lake No. 1. The greater the number of exceedances, the more 
persistent a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar 

Technologies, Public Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 

 

Figure 12. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) 
from April 1st 2019 through October 31st 2019 at Teller Lake No. 5. The greater the number of exceedances, the more 
persistent a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar 

Technologies, Public Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 
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Viele Lake, part of Harlow Platts Community Park, is located near Fairview High School in a residential area of 

Boulder. 2019 data suggest limited evidence for potential cyanobacterial presence, but large numbers of NIR:Red 

exceedances (Figure 13). Although large exceedances are primarily near the edge of the waterbody, many of the 

high-value pixels are far enough away to not be affected by terrestrial vegetation. As with other waterbodies we 

have examined, this indicates algal blooms may be most prevalent around near the lake-shoreline interface. 

 

Figure 13. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) 
from April 1st 2019 through October 31st 2019 at Viele Lake in Boulder. The greater the number of exceedances, the more 

persistent a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar 
Technologies, Public Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 

Our final waterbody, Wonderland Lake, is one of the crown jewels of the Boulder OSMP system. Similar to Viele 

Lake above, we found evidence of algal blooms primarily near the shoreline according to NIR:Red exceedances 

(Figure 14). Many of these pixels are far enough away to not be influenced by terrestrial vegetation, again 

indicating algal blooms were occurring at the edge of the waterbody. Although taken in 2020, a photo from the 

eastern shoreline in Wonderland Lake shows an ongoing algal bloom (Figure 15), which is consistent with the 

remote sensing data. We found no evidence of cyanobacterial blooms in 2019 when using the FAI and NDWI 

thresholds. 
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Figure 14. The number of exceedances counted using the NIR:Red threshold (left) and the FAI and NDWI thresholds (right) 
from April 1st 2019 through October 31st 2019 at Wonderland Lake in Boulder. The greater the number of exceedances, the 
more persistent a probable algal or cyanobacterial bloom may be. Satellite imagery: © 2020 Google, CNES / Airbus, Maxar 

Technologies, Public Laboratory, U.S. Geological Survey, USDA Farm Service Agency. 

 

Figure 15. Algae visible on the east shore of Wonderland Lake, June 5th, 2020. 

 

 Discussion 

 Remote sensing results in context 

Our remote sensing analysis indicates the prevalence of algal blooms varies over space and time in Boulder 

County waterbodies. While some Open Water pixels exceed the NIR:Red threshold over 80% of the time, others 

exceed it less than 10% of the time, meaning algal blooms can only be understood on a waterbody-by-waterbody 
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basis. Older statewide data indicates chlorophyll-a concentrations vary by several orders of magnitude in large 

Colorado waterbodies, from the single to triple digits (Colorado Water Quality Forum, 2012). Boulder’s own water 

quality data indicate chlorophyll-a levels in Barker, Boulder, and Silver Lake Reservoirs are typically less than 10 

µg l-1, making them relatively free of algae, at least at the sampling points. Because higher NIR:Red values are 

associated with greater chlorophyll-a concentrations (Tebbs et al., 2013), the waterbodies with larger ratios and a 

greater number of exceedances are possibly experiencing more concentrated, more persistent algal blooms.  

In regard to cyanobacteria, the state has recently started publishing its testing data from various Colorado 

waterbodies (Colorado Department of Public Health and Environment, 2020). Their results show that the species 

of algae and toxicity levels vary from location to location and across time at a single waterbody. Similarly, we 

found from the remote sensing data that possible cyanobacterial blooms were not found in every waterbody and 

that the frequency varies from year to year. Additionally, the FAI and NDWI algorithm indicated cyanobacteria are 

relatively rare in Boulder, but this may warrant further investigation and in situ testing given the adverse public 

health and water quality impacts of blue-green algae. 

 Assumptions and limitations 

Our findings rely on remote sensing data and the application of two empirical algorithms to estimate the presence 

of algae and cyanobacteria. Although our approach has numerous advantages, including retrospective analyses 

and the ability to evaluate large spatial extents, it has several key assumptions and limitations. The NIR:Red 

algorithm, for example, assumes the difference in reflectance between clear water and algae can be leveraged to 

estimate the presence of an algal bloom. While this is true, the algorithm may infer a potential bloom when a 

remote sensing pixel also includes terrestrial vegetation and/or emergent aquatic vegetation. Making this even 

more problematic is that other remote sensing work has shown algae often accumulates at the land-water 

interface, meaning the most difficult areas to observe remotely are also the most likely to have algal blooms. 

Likewise, care should be taken when interpreting the cyanobacteria results. Toxicity and algal species can only be 

proved using water samples and laboratory sampling, so we recommend that our findings be used to guide future 

targeted monitoring strategies. 

When examining the long-term satellite data, we detected a moderate increase in algal bloom incidence from the 

early to later part of the Landsat 7 record. Although this is indicative of an increasing trend in algal blooms, care 

should be taken in interpreting the results. One, Landsat 7 has a fairly short record for computing trends, meaning 

interannual variations may have an outsized effect on trend detection. In other words, a year with low algal bloom 

prevalence early in the record coupled with a high year later in the record could give the appearance of a trend, 

when a longer term analysis would not detect one. And, two, Landsat 7 appears to indicate greater algal bloom 

prevalence than Landsat 5. The satellites use similar sensors that detect reflectance over similar bands, but they 

are not identical. Therefore, small differences in algorithm output would be expected from the two instruments. 

In addition to limitations from the algorithms, we also note that optical data from the Landsat and Sentinel 2 

instruments are used less frequently than other sensors in algal bloom work. Previous and ongoing research has 

relied on output from the Moderate Resolution Imaging Spectroradiometer (MODIS), Sentinel 3, and the Medium 

Resolution Imaging Spectrometer (MERIS). These are multispectral satellite platforms that measure reflectance in 

15 (MERIS) to 21 (Sentinel 3) bands. MODIS measures up to 36 bands when including wavelengths longer than 

the near-infrared. This large number of bands and generally higher spectral resolution when compared to Landsat 

and Sentinel 2 allows for the deployment of more advanced algorithms that may better detect algal blooms. 

However, a major shortcoming of these sensors is their large spatial resolution, which ranges from 300 m for 

Sentinel 3 and MERIS to 500 m for MODIS. This large footprint precludes their use in small waterbodies. To 

illustrate this problem, Wonderland Lake is approximately only 150 m wide as measured from north to south at its 

midpoint. Thus, a single remote sensing pixel from one of these platforms would include both water and land, 

making them unsuitable for analysis in our study area. To note, Lagerman Reservoir is currently tracked by the 

Environmental Protection Agency’s CyAN project despite likely producing mixed pixels as a result of its size and 

shape. 

https://www.epa.gov/water-research/cyanobacteria-assessment-network-cyan
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Lastly, our findings only address the potential presence and trend in presence of algae and cyanobacteria in 

Boulder County waterbodies. Observing the presence and tracking any trends is a critical first step. However, 

additional detailed information, that was beyond the scope of this work, is needed to evaluate whether any of the 

observed changes we note is of ecological significance. 

 Management implications 

The evidence presented above indicates algal blooms may be an increasingly important phenomenon in Boulder 

County waterbodies. Seeing the blooms as an emerging problem gives Boulder OSMP the opportunity to learn 

how algal blooms are being managed by other municipalities. For some, this starts with enhanced water quality 

monitoring and sharing those results with the community. In Austin, TX, the city has created a webpage with 

information about algal blooms, why they develop, and the risks they pose to humans and animals (City of Austin, 

2020). From this page, users can access a desktop or mobile version of an online dashboard that displays algal 

presence, cyanotoxin, and water temperature data (Figure 16). Visitors to the site can thus identify which areas to 

avoid when planning water-based outings. 

 

Figure 16. Algae dashboard for Austin, TX displaying risk level, water temperature, sampling locations, algae presence, 
cyanotoxin testing data, and other background information (City of Austin, 2020). Dashboard link: https://arcg.is/0KmGbO 

At the state level, Vermont has a similar page where people can access information about harmful algal blooms, 
including testing data, risk levels, and potential dangers. The page also includes data and reports from previous 
years along with a link to an interactive dashboard that show current testing results and risk across the state 
(State of Vermont, 2020). In Colorado, the Department of Public Health and Environment publishes its own 
cyanobacteria dashboard to keep citizens informed of ongoing blooms and toxicity issues.  

The cost of in-situ testing for the presence of cyanobacteria and associated toxins can be prohibitive, especially 
for a department like OSMP that has over 200 waterbodies on lands under its management. Additionally, 
cyanobacteria are known to exhibit spatial and temporal variability in the waterbodies they inhabit. This means 
simple random testing of waterbodies may yield results that are misleading, offering the public assurances that 
can change on a day-to-day basis (i.e., in between monitoring events). These considerations, along with cost, 
must be balanced when considering any new in situ monitoring program. 

https://arcg.is/0KmGbO
https://cohealthviz.dphe.state.co.us/t/EnvironmentalEpidemiologyPublic/views/newhab_draft/HABdash
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Some jurisdictions have turned to citizen scientists to help defray cost of monitoring. Vermont includes citizen 
observers in its program through its collaboration with the Lake Champlain Committee that trains volunteers to 
monitor algal blooms via photographs and water quality samples. Citizen Science Tahoe also uses crowdsourced 
photographs to track algal bloom presence in the Lake Tahoe area. Previous research in the citizen science 
domain has shown the use of volunteer observers can increase science literacy, engage the community, and 
stretch limited resources to accomplish scientific objectives. While volunteer programs are not cost-free for 
sponsor agencies, these ongoing projects suggest it may be useful to engage citizen scientists in monitoring 
efforts moving forward. 

Other management strategies that may help defray the cost that are worth considering include drone-based 
monitoring, which would allow a higher spatial resolution analysis of algal bloom patterns than satellite data. 
Boulder OSMP may also wish to collaborate with the state as the state may have funding to support monitoring 
and management of this emerging concern. 

In addition to identifying where and when algal blooms have occurred, it is important to evaluate why they have 
occurred in order to further guide in situ monitoring and management strategies. Previous research suggests 
algal blooms occur more frequently in stagnant waterbodies, during periods of warm air temperatures, and when 
phosphorous and nitrogen levels are elevated (Paerl et al., 2016). Many of the urban landscapes surrounding 
waterbodies within the city limits provide ample sources (e.g. fertilized lawns and parks) for these nutrients.  
While these patterns may be useful to management and planning, there are significant opportunities to improve 
our knowledge of the relationships between algal bloom frequency and easily observed climatic, hydrologic, 
physiographic, and land use/land cover quantities. In particular, machine learning strategies (Breiman, 2001) 
show promise in being able to quantify relationships between observed phenomena and predictor variables 
(Addor et al., 2018; Bachmair et al., 2017). As Boulder OSMP moves to tackle the management challenges posed 
by algal blooms, it may consider some of these strategies in the years to come. 

 Conclusions 
We used two remote sensing algorithms to track the prevalence of algal blooms and cyanobacterial outbreaks in 

Boulder County waterbodies. Results from the NIR:Red algorithm, which is the reflectance ratio between the near 

infrared and red bands, showed possible algal bloom presence varies from less than 10% to over 80% in Boulder 

County waterbodies. Time series analysis indicated the prevalence of algal blooms has increased from the 1999–

2009 period to the 2010–2020 period. Results from a dual-threshold (FAI and NDWI), rule-based algorithm 

showed possible cyanobacterial blooms are infrequent in Boulder County, with the greatest number occurring in 

2019. High-resolution satellite data from 2019 covering eight different waterbodies revealed different spatial 

patterns in algal blooms and cyanobacterial outbreaks, depending on the location being examined. Although the 

remote sensing algorithms have key limitations, they offer an unparalleled look into the historical prevalence of 

algal blooms in Boulder County.  

 Data and code availability 
All raw remote sensing data used in this project can be found on Google Earth Engine: 

• Landsat 5 

• Landsat 7 

• Landsat 8 

• Sentinel 2  

The lead author can be contacted for all Google Earth Engine code and pre-processed remote sensing data 
(kjennings@lynker.com). R code used to analyze the data can be found on the lead author’s GitHub page: 
https://github.com/SnowHydrology/algal_blooms.  

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_TOA/
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_T1_TOA
https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_TOA
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2
mailto:kjennings@lynker.com
https://github.com/SnowHydrology/algal_blooms
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