
THESIS 

MODELING THE EFFECTS OF HABITAT QUALITY ON 

BLACK-TAILED PRAIRIE DOG HABITAT OCCUPANCY USING 

SPATIALLY CORRELATED DATA 

Submitted by 

Jon R. Belak 

Department of Fishery and Wildlife Biology 

In partial fulfillment of the requirements 

for the Degree of Master of Science 

Colorado State University 

Fort Collins, Colorado 

Fall 2001 



COLORADO STATE UNIVERSITY 

November 200 1 

WE HEREBY RECOMMEND THAT T HE THESIS PREPARED UNDER OUR SUPERVISION BY 
- - ~ ~ - ~~ ~~ - - - - - -  - - - -  ~-~-pp~- -~ - -  ------------p----- ~ - -  ~ ~ - -- 
-pp-pp ~ - - -  -- --- ~ --p ~p-- - ~ ~- - -  ---- - -  - -  ~ ~ - - ~ 

- - - ~  - - - --- -- -- -- 

JON R. BELAK ENTITLED MODELING THE EFFECTS OF HABITAT QUALITY ON I 
BLACK-TAILED PRAIRIE DOG HABITAT OCCUPANCY USING SPATIALLY CORRELATED 

DATA BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF 

MASTER OF SCIENCE 

Committee on Graduate Work 

Adviser 

Department Head 



ABSTRACT OF THESIS 

MODELING THE EFFECTS OF HABITAT QUALITY ON 

BLACK-TAILED PRAIRIE DOG HABITAT OCCUPANCY USING 

SPATIALLY CORRELATED DATA 

The black-tailed prairie dog congregates in clusters of distinct patches across the relatively homogeneous 

grasslands in which it occurs. This patchy distribution is in part a response to differences in habitat quality 

between sites, but there is also a social component to the habitat selection of this colonial species. The 

approach described in this paper divides the landscape into 30 m square pixels, using measures of habitat 

quality quantified at this scale to model the relationships between presence of prairie dogs and habitat 

attributes at the pixel level. The inadequacy of non-spatial analyses using these data is demonstrated as 

justification for a global model that accounts for spatial autocorrelation in habitat occupancy, indirectly 

modeling the social component of habitat selection and providing more precise and unbiased estimates of 

the effects of habitat variables. 

Jon R. Belak 
Fishery and Wildlife Biology 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 2001 
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INTRODUCTION 

CONSERVATION CONTEXT 

-pppp-===u= ~ - - - --- - ~- - -  == =~ 
~ 

The black-tailed prairie dog (hereafter referred to as "prairie dog") is a diurnal rodent native to the 

prairies of Western North America. The colonial nature of this species, probably its most distinctive 

characteristic, results in large groups of individuals aggregated in distinct populations across the landscape. 

Before extensive human modification of the prairie, prairie dogs likely had equilibrium metapopulation 

structure over large portions of their range (Gilpin 1999), with mosaics of spatially distinct populations 

connected by dispersal, a dynamic spatial pattern but relatively stable proportion of habitat occupancy over 

time, and a high degree of overall population persistence. 

Prairie dogs are still broadly distributed throughout their historic range, but habitat fragmentation, 

introduced disease, and direct human persecution of the species have shifted the patch-level population 

structure toward smaller and more isolated clusters of populations with little connectivity between clusters. 

It is likely that this spatial subdivision decreases overall persistence probability for the species. According 

to the United States Fish and Wildlife Service, prairie dogs occupy only 5% of the habitat they occupied at 

the turn of the century, and 1 % of the area occupied before modification of their habitat by humans (USDI, 

1999). With continued habitat loss, it is possible that the species will be unable to survive as small clusters 

of populations sparsely distributed across its former range. 

It is well known that prairie dogs modify the habitat they occupy and serve as prey for other 

species that are known or suspected to be in decline. Associated species include the Black-footed Ferret 

(Mustela nigripes), Mountain Plover (Charadrius montanus), Burrowing Owl (Athene cunicularia), Golden 

Eagle (Aquila chrysaetos), Swift Fox (Vulpes velox), and Fermginous Hawk (Buteo regalis). Prairie dog 

colonies have been shown to support greater densities of small mammals and greater density and species 

richness of birds than adjacent mixed-grass sites (Agnew 1983, Agnew et al. 1986). Prairie dogs affect 

grassland plant-species composition, enhancing habitat for Bison (Bison bison) and Pronghorn Antelope 

(Antilocapra americana), and the species also improves forage quality and net N-mineralization in surface 

soils (Krueger 1986, Detling 1998). In general, the patchy and shifting nature of prairie dog disturbance 



over time is thought to enhance range and soil quality over broad temporal and spatial scales (Whicker and 

Detling 1988). These effects have led some researchers to suggest that prairie dogs may be a keystone 

species, with ecological importance disproportionate to their biomass (Kotliar et al. 1999, but also see 

Stapp 1998). Loss of h e  prairie dog could have large, cascading effects on the prairie ecosystem as a 

whole, and this provides additional incentive for conservation of the species. 

In 1994, concern over long-term viability led to a petition to declare the prairie dog a candidate for 

listing under the Endangered Species Act (USDI, 1999). This petition was declined after a 90-day review. 

Two new petitions were submitted in 1998, leading to a 12-month status review. On February 3,2000, the 

USFWS issued a 12 month finding that threatened status was warranted, but precluded by the existence of 

other species with higher listing priorities (USDI, 2000). This decision put the responsibility for 

management of the species largely in the hands of individual states, Indian nations, and private landowners. 

A cooperative prairie dog conservation effort was initiated in 1998 that involved 1 I states and 

several Indian nations. The initial agreement established an interstate conservation team with 

representatives from each state and Indian nation, and each state created its own working group of 

stakeholders to focus on the development of Candidate Conservation Agreements with Assurances 

(CCAAs). These are agreements made with the US Fish and Wildlife Service in which the property holder 

agrees to a certain level of conservation for a species of concern in return for assurances that additional 

federal regulation will not be imposed in that area should that species be listed as endangered. Although 

Indian nations have recently withdrawn from the official CCAA process (Mike Fox, Native American Fish 

and Wildlife Society, Pers. Comrn.), they still intend to submit prairie dog management plans by the 

deadline that are similar to those that states will submit as part of a CCAA. 

The first step in the CCAA negotiation process is the development of umbrella CCAA's between 

each participant and the federal government that set target acreage objectives for prairie dog habitat and set 

management guidelines for these areas. Each of these agreements must be approved by all parties in the 

group. These are scheduled to be in place by October 2001, and it is expected they will support de-listing 

of the species during the 2002 Candidate Assessment. CCAA's involving private landholders are expected 

to follow. These types of management agreements are unprecedented conservation tools that have 



tremendous potential, both for species preservation and for misuse. They are to be tested first on the 

conservation of the prairie dog. 

Given the current situation, evaluating the conservation potential of areas where the species is 

- -  -- 
--=- already protectedis a logical-firststep,_The_Eorest~Service has issued a moratorium on control - efforts for 

-- - 
the National Grasslands, and has proposed managing for larger populations. Although these proposed 

management plans have not received final approval at this point, it makes sense to maximize conservation 

of prairie dogs on federal land if federally mandated conservation of the prairie dog conservation in other 

areas is to be politically viable. 

Identifying areas of suitable habitat is necessary for effective management to maintain and 

augment existing prairie dog colony networks. This requires understanding relationships between habitat 

covariates and observed patterns of prairie dog habitat use. The research described below quantifies these 

relationships by estimating habitat covariates from existing data sources and exploring their relationship 

with known habitat occupancy patterns using synthetic statistical models that predict habitat suitability 

based on a small set of habitat covariates. 

PREVIOUS BLACK-TAILED PRAIRIE DOG HABITAT USE RESEARCH 

Past attempts to study prairie dog habitat use focused mainly on relationships with other grazing 

animals, dietary preferences, characteristics of plant and animal communities associated with prairie dog 

colonies, and the social structure that generates habitat occupancy patterns. These studies are useful to help 

define the micro-site characteristics related to prairie dog habitat occupancy. 

Early prairie dog research focused on examining the degree of dietary overlap (i.e. competition) 

between the prairie dog and domestic cattle. The simplest way to make such a comparison is to examine 

the average biomass intake of an individual of each species. Merriam (1901) estimated that 256 prairie 

dogs consume the same amount of forage in a year as a single cow, but this statistic had no empirical basis. 

When studies measuring biomass consumption of each species (USDA 1968, Hansen and Cavender 1973) 

are compared, the biomass consumption of a single cow or cow-calf unit is roughly equal to that of 532 or 

389 prairie dogs, respectively. This type of analysis assumes 100% dietary overlap and no loss of herbage 



due to prairie dog digging and clipping (or cattle trampling). Prairie dog digging and clipping may be 

incorporated by introducing prairie dogs into fenced enclosures and measuring the reduction in forage 

production that results (Taylor and Loftfield 1924), but the artificial introduction of individuals into an 

enclosed area where they did not previously occur has unknown effects on the results. 

More importantly, neither type of comparison takes into account the nutritional content of the 

forage being consumed. Subsequent studies (O'Meilia et al. 1982, Uresk and Bjugstad 1983) have not 

detected any negative effects on cattle due to prairie dog competition, and examinations of nutritional 

content of plants found on and off prairie dog colonies have found that though prairie dogs reduce the 

overall quantity of biomass within a colony, the quality of the remaining forage is often higher than that 

found off towns (Coppock 1981). These studies are not conclusive, however, and further research is 

necessary to determine the extent of competition between these two species given differences in plant 

nutritional content within and outside prairie dog colonies. 

Studies of cattle-prairie dog interactions clearly show a synergistic relationship between cattle 

grazing and prairie dog habitat occupancy. In 1949, Osborn and Allen credited regenerating tall vegetation 

in a fallow pasture for the elimination of a small prairie dog colony located in tall-grass prairie. Snell and 

Hlavachick (1980) found that elimination of cattle grazing during the growing season within and around a 

large colony in Kansas and the resulting vegetation growth was associated with a 90% decrease in the size 

of the colony. Knowles (1982), studying prairie dog distribution in eastern Montana, concluded that prairie 

dog distribution was mainly influenced by heavy livestock grazing pressure and other land disturbances 

created by humans. Uresk et al. (1982) found that the burrow densities within Conata Basin in Buffalo Gap 

National Grassland increased twice as fast in areas grazed by cattle vs. ungrazed areas. Cincotta (1985) 

reported that prairie dog colony expansion on the adjacent Badlands National Park was greater in heavily 

grazed areas and areas previously disturbed by homesteading activity. This was corroborated by Langer in 

1998 using a GIs analysis based on comparison of old homesteading records with known prairie dog 

distributions. Cincotta et al. (1988) built a linear regression model to predict prairie dog establishment 

adjacent to existing colonies. They found that population density, visibility through vegetation, and the 

interaction of these two terms were significantly associated with colony expansion (p < 0.10). These 

studies indicate that prairie dogs prefer areas with reduced vegetation density created by grazing pressure. 



Dietary preferences of prairie dogs as reconstructed through examination of their stomach contents 

also reveal information about habitat use. Analysis of prairie dog food preferences is problematic, 

however, because they are "selective opportunists" ( Clippinger 1989). Prairie dogs select different plants 

and parts- of~plants~during~the~gr~~ing~season,but-are capable-of sumiving-on-a-wide-range-of-forage-with- -- 

no measurable effects on their health, and dietary preferences within and between colonies vary 

significantly even when overall species composition is similar (Fagerstone et al. 1977). Summers and 

Linder (1 978) examined the diets of prairie dogs living within two separate colonies and four distinct 

vegetation types in South Dakota. There were significant differences in vegetation composition when 

burrows within a single vegetation type, between types in the same colony, and between colonies were 

compared. Consumption patterns between colonies were significantly different. Fagerstone et al. (1981) 

studied variation in the diet of 158 prairie dogs collected from 12 colonies in Buffalo Gap National 

Grassland over six times of year. Vegetation composition varied significantly between (but not within) 

colonies. Consumption of brome (Bromus spp.) and buffalograss (Buchloe dactyloides), both preferred 

forages, varied significantly within colonies, while between colonies there were significant differences in 

consumption of red three-awn (Aristida longiseta) and prairie dogweed (Dyssodia papposa), which are 

generally not preferred. 

These studies illustrate the difficulty in making generalizations about the prairie dog diet between areas 

and predicting habitat suitability on the basis of plant species composition. The fact that species 

composition and availability are altered over time in and around colonies further confounds vegetation use 

versus availability relationships. Prairie dogs decrease the standing crop, cover, and frequency of perennial 

grasses while increasing these measures for annual species (Lerwick 1974). Ratios of forb versus 

graminoid species as well as overall plant diversity are significantly hlgher in the core areas of established 

colonies (Coppock 198 I), and peak live biomass of graminoid vegetation in areas occupied for 1-2,3-8, 

and over 25 years, was 39%, 61%, and 97% lower than in adjacent unoccupied areas (Coppock et al. 1980). 

Bonham and Hannan (1 978) reported a twofold decrease in blue grama (Bouteloua gracilis) clump size 

within prairie dog towns compared to adjacent unoccupied prairie. The fact that prairie dogs alter species 

composition over time makes the use of vegetation type as a predictor of prairie dog occupancy 

problematic since differences in vegetation could be a result of continued habitat occupancy as well as the 



reason an area is initially occupied. In addition, categorical vegetation predictors can only be incorporated 

within the analysis framework as dummy variables, which have inherently less predictive power and may 

not be averaged over time like continuous variables. The relationship between prairie dog habitat 

occupancy and vegetation density is more clear cut, though problems in attributing causality still exist. 

Regardless of the vegetation types present in an area, it is unlikely to be occupied by prairie dogs if 

vegetation is too dense (Merriam 190 1, Osborn and Allen 1949, King 1955, Koford 1958, Hoogland 198 1, 

Clippinger 1989). 

Prairie dog habitat occupancy results from the interaction between selection at the level of the 

individual and the colonial nature of the species. Both of these processes structure habitat use patterns at 

multiple scales. As Hoogland (1 995) notes, he has never seen an individual prairie dog living apart from 

others; they are an obligate colonial species. Even so, resource scarcity and inbreedmg avoidance require 

that some individuals, usually males, migrate from their natal coteries, the basic matrilineal social unit of a 

colony. Groups of coteries are subdivided into wards by intervening non-habitat, and clusters of wards 

constitute a colony. Even though individuals from different coteries rarely physically interact unless they 

are dispersing or defending territory, within a town all individuals share in the responsibilities of providing 

alarm calls to protect the colony as a whole (Hoogland 1995). These three hierarchlcal levels of structure 

generate the clumped pattern of prairie dog habitat occupancy that is characteristic of the species' habitat 

use patterns. 

The main conclusions relevant to this study that may be drawn from the above research are as follows: 

Extreme values for some habitat variables (e.g. vegetation density) apparently constrain patterns of 

prairie dog habitat use (Cincotta et al. 1988). 

Within the occupied ranges of these constraining variables, little is known about prairie dog preference 

and whether these variables have any direct cause-effect interpretation. 

Prairie dogs are ecosystem engineers (Jones et al. 1994). This behavior complicates habitat modeling 

since one is measuring habitat attributes that change as a result of the animal's behavior as well as more 

static attributes that may have stimulated the initial habitat selection. 



A REVIEW OF EXISTING PRAIRIE DOG HABITAT SUITABILITY MODELS 

The first attempt to quantify prairie dog habitat suitability in terms of measurable habitat variables was 

-~ - -  ~- --- ~~ 

-- - -Glippinger's=(-l-989)=Habitat-=S~itability=~ndex=~HSI=model. - This is-one-of-the series of-USEWS-HSI--- 

models which relate the habitat use of a wildlife species to a set of habitat attributes that presumably affect 

food, cover, and reproduction. Variation in the values of individual habitat attributes results in variation in 

the HSI (habitat suitability index). This number is scaled fiom zero to one, with one being most suitable 

and 0 being unsuitable. HSI's for each attribute are then combined using a specific algorithm. The 

resulting index ranges between 0 and 1 and is intended to express the suitability of the area based on all 

relevant characteristics of habitat quality. 

The Clippinger HSI model defined functions to express habitat suitability based on percent 

herbaceous cover, percent slope, average vegetation height, and soil type (Figure 1). The herbaceous cover 

function was defined by searching the literature for the maximum and minimum values observed on active 

prairie dog colonies. The minimum observed % herbaceous cover observed on active colonies is 25% 

(Fagerstone et al. 1977), and this is the lowest cover value with an HSI of one. Below this point, habitat 

suitability declines abruptly in a linear fashion until it reaches zero at a percent cover value of 15%. The 

HSI value at the maximum observed herbaceous cover of 91 % (Uresk 1984) approaches zero; as cover 

decreases the HSI abruptly increases, reaching an HSI of one at 80% cover. Slope has an HSI value of one 

until 10% slope is reached, after which it declines in a linear fashion, reaching an HSI of zero at 20% slope. 

Average vegetation height has an HSI of one from 0-25 cm, after which the index value drops sharply, 

decreasing its slope at 40 cm. and becoming zero at 80 cm. Relative forb cover was originally included in 

the model, but was removed during the model verification process. Soil type, a categorical variable, is 

represented as a histogram. Loam and sandy loam have reduced HSI's (0.8 and 0.6), sand has an HSI of 

zero, and all other types have an HSI of one. 

Model validation consisted of randomly selecting 21 I-ha plots within occupied areas of Rocky 

Mountain Arsenal near Denver, CO. Visual counts of prairie dogs in each plot were used to estimate 

population density, and these figures were compared to HSI values calculated for each plot based on the 

values of the habitat attributes. Model performance was fair (r = 0.49, p = 0.02), but the author noted that 



there were few index values between 0 to 0.5 and hypothesized that the colonial nature of prairie dogs 

requires a level of habitat quality sufficient to support a minimum of two coteries or 15 individuals per ha if 

an area is to remain occupied over time. This may be true, but it is also likely that HSI values were inflated 

by the small size of test plots and the use of categorical habitat quality attributes with a relatively few 

number of possible values. This model is based upon previous research from studies conducted throughout 

the species range, not a coherent set of habitat observations from one location, and the area chosen for 

model validation may not be representative of conditions throughout the species' range. 

A second habitat model was produced by the United States Forest Service for the National 

Grasslands (unpublished). This model used data from previous studies to define the habitat attributes 

important for prairie dog habitat occupancy and the levels of each that represent preferred, marginal, or 

unsuitable habitat. The habitat attributes were used in a geographic information systems (GIs) intersection 

analysis to classify the public areas of all National Grasslands managed for prairie dogs. This is a 

consequence model; that is, it explores the results of a set of a priori assumptions. Table 1 shows the 

habitat traits used to define suitability. For all of these habitat attributes, eliminating areas classified as 

unsuitable or marginal removes only a small fraction of the area under consideration, and there are only a 

few possible values for each attribute used as an independent variable in the model. Like the HSI model, 

variables are categorical or summarized as categories. Consequently, the model is unable to eliminate 

many areas from consideration. 

For each grassland, the output of the model was overlaid with a coverage showing all areas 

known to be occupied by prairie dogs. After the classification criteria for some predictors were modified, 

90-95% of all occupied areas fell within preferred or marginal habitat. Visual comparison of model output 

to observed habitat occupancy for Fort Pierre National Grassland, however, reveals that most areas 

classified as preferred were never occupied, many areas designated as marginal were occupied consistently, 

and less than one-third of the area initially considered by the model was eliminated (Figs. 2 & 3). In 

addition, visual examination of reclassified model predictions (suitable or unsuitable instead of preferred, 

marginal, and unsuitable) within a portion of the Conata Basin study area (Fig. 4) reveals that the model 

predicts small areas of unsuitable habitat in a seemingly random, "salt and pepper" fashion across the 

landscape. Since the analysis is based upon intersecting a series of individual complex polygon coverages 



for each attribute, creating new coverages with millions of smaller polygons that have all the attributes of 

their parent coverages, then applying suitability rules based on all habitat attributes to each small polygon, 

it is inherently susceptible to scattered error patterns like those shown in Figure 4. The model seems to 

~ ~- - -- - -make=reas~nable~predictions~on~the_left side_of=the_figure, bututthee overalltendency toward this type of errorp 

pattern decreases the usefulness of model output. 

These results also suggest that too little is known about the habitat associations of prairie dogs for 

effective parameterization of a consequence model. While it is possible to define broad habitat tolerances 

within which the species can survive and to produce maps of their expected distribution, the results of 

these analyses tell us little about habitat selection. A better understanding of habitat use patterns requires 

exploration of fine-grained associations between habitat occupancy and quantitative habitat variables using 

statistical models. 

Proctor (1998) performed the first such analysis, relating patterns of habitat occupancy 

(occupied/unoccupied) at the scale of a 30 m Landsat TM pixel to vegetation type, slope, soil texture, and 

soil depth quantified at the same scale. The final model, based on a classification and regression tree 

(CART) analysis (Morgan and Messenger 1973), used vegetation, slope, and soil texture to predict four 

levels of suitable habitat. This model has been used by Montana Fish, Wildlife, and Parks to identify 32 

million acres of prairie dog habitat across eastern Montana, including 2.3 million acres of preferred habitat. 

This model, unlike those described above, was based on associations between observed habitat use 

and measures of habitat quality within the area modeled rather than values taken from various published 

studies using data from different areas. Also, areas known to be unsuitable such as open water, forested 

areas, and wetlands were eliminated from the data, allowing the modeling process to focus on habitat 

relationships of interest and to exclude others that may introduce noise. Even though including these areas 

may have added to the apparent predictive power of a model, this would add little to our knowledge of 

prairie dog habitat relationships. By focusing more closely on areas of interest, the model was able to make 

relatively precise and accurate predictions. 

When Proctor's final CART model was used to make predictions based on the data used to create 

it, Category 1 (unsuitable) habitat made up 82.2% of the study areas, but contained only 14.8% of the total 

area occupied by prairie dogs. All other habitat categories were to some extent suitable, and 85.3% of these 



areas were occupied even though they made up only 17.8% of the total area (Table 2). These results 

indicate that the model was able to discriminate suitable from unsuitable areas with reasonable accuracy. 

The relative contribution of different attributes and the relationship of each with habitat occupancy is could 

not be estimated, however, since habitat was divided into classes based on limited combinations of 

categorical predictors. 

In addition, observations (e.g. adjacent pixels) were treated as statistically independent even 

though they were not. This can lead to spurious significant relationships between habitat predictors and 

occupancy (see below). Also, predictors improve in CART models simply as a function of sample size 

(Breiman et al. 1984). Since CART works by repeatedly subsetting the data based on all possible values 

for different categorical predictors, as long as sample sizes are large it is fairly likely that particular values 

for each predictor will produce a classification much better than one that could have developed by chance. 

Proctor's data sets had 22382 and 26108 observations. 

The authors observe that occupancy of areas not classified as lvghest quality (category 5: 0-4% 

slopes, preferred vegetation) usually occurred when these areas were adjacent to high quality occupied 

habitat. This discrepancy in occupancy patterns is likely due to spatial factors that are important to prairie 

dog habitat occupancy but were not incorporated in the modeling process. 

The research summarized above indicates that there is no obvious set of habitat attributes that 

clearly define prairie dog habitat. That is, the species is widely, but patchly distributed throughout prairie 

ecosystems. Other than differences in gross habitat attributes (e.g. slope, elevation), areas occupied by 

prairie dogs within this ecosystem seem similar to unoccupied areas. As a consequence, it is difficult to 

map, a priori, the distribution of suitable habitat in the absence of concurrent prairie dog survey data. 

Our inability to map the distribution of suitable prairie dog habitat has 3 possible explanations: 

(1) we are unaware of, or incapable of measuring and mapping the habitat attributes that prairie dogs are 

actually evaluating when selecting habitat; (2) the spatial distribution of prairie dogs is largely random with 

respect to prairie ecosystems, and an animal's settling response is driven more by the presence of 

conspecifics than by habitat; or (3) there is both a social and a habitat component to selection. In this case, 

habitat associations shown by the species may be an expression of necessary but not sufficient conditions. 



That is, true habitat relations exist, but the strength of the stimulus to settle based upon these habitat 

attributes is strongly modulated by presencelabsence of conspecifics. 

The models described below are based on the assumption that the latter hypothesis is true, and 

~ 

model~spPatial=correlations=i~~=tlie=dependent variables to account for-the social-component-of prairie dog--- - 

habitat selection. The sections that follow explain how spatial statistics can be used to minimize social 

effects that confound the study of specieslhabitat relationships, allowing habitat quality factors that are 

related to patterns of habitat use to be more reliably identified. 

FITTING SPATIAL MODELS TO BIOLOGICAL PATTERNS 

What is Spatial Autocorrelation and why is it important? 

Spatial Auto-Correlation (SAC) is the tendency for things that are close to one another to be more 

similar (or different) than those farther from one another. In this case, prairie dog habitat occupancy is 

thought to be positively correlated in space, with less suitable areas being occupied mainly because they are 

adjacent to more suitable occupied areas. As a simplified case, imagine a map of a small fragment of 

prairie dog habitat with occupancy and habitat attributes resampled into 30 m square cells (Fig. 5). Darker 

green cells have identical values for all predictors. These areas are highly suitable for prairie dogs and are 

consistently occupied. Light green cells are also identical to one another, but are marginal in quality and 

sporadically occupied. Red cells are known to be unsuitable (forest, open water), and are excluded from the 

analysis. Occupied areas are cross-hatched. All 25 cells of optimal habitat ire occupied, but 24 cells in 

adjacent marginal habitat are occupied as well. 

The non-spatial regression analyses previously discussed treat all occupied areas as equivalent; 

each occupied cell in marginal habitat has the same influence on the final model as occupied cells in 

optimal habitat. The influence of marginal cells that are occupied only because they are adjacent to 

occupied, highly suitable cells leads to models that cannot discriminate between different levels of habitat 

quality. Predictors that incorporate habitat and spatial factors simultaneously may be used in these non- 

spatial models in an attempt to incorporate missing spatial relationships, but the biological implications of 



these indirect predictors are often ambiguous, and their use does not necessarily lead to a model that is easy 

to interpret (Guisan and Zimmermann 2000). When spatial autocorrelation is modeled directly, effects due 

to correlations in the response variable may be partitioned from those due to relationships with habitat 

quality, leading to a clearer interpretation of model results and their implications for habitat management. 

Statistical significance and the failure to incorporate SAC 

In any non-spatial logistic regression analyses on GIs raster data, adjacent 30 rn squares of land 

are represented by $dependent observations in the dataset, even though the distance between samples is 

much smaller than the distance over which the dependent and independent variables are correlated in space 

(Legendre and Fortin 1989). As Figure 6 illustrates, assuming independence between non-independent 

observations overestimates degrees of freedom and biases estimates of regression coefficients and their 

standard errors, resulting in coefficients being declared significantly different from zero when they are not. 

In this way, habitat predictors that are not strongly associated with habitat occupancy may be highly 

significant in non-spatial regression analyses, but far from significant when spatial autocorrelations in the 

data are accounted for. 

Analytical techniques for Modeling Spatial Autocorrelation 

Spatial correlation can be directly incorporated into logistic regression models in two different 

ways, and each offers advantages and disadvantages. Autologistic models condition the response of each 

individual pixel on the response of cells within some predefined neighborhood surrounding it. A spatial 

covariate predictor that is a distance-weighted average of the number of occupied pixels in the 

neighborhood of each observation is estimated, closely modeling a particular spatial configuration. The 

value for this predictor is observation-specific, and is used directly in the main effects model. This method 

has obvious advantages in terms of increased accuracy, and it has performed well when used to model 

species habitat relationships (Preisler and Mitchell 1993, Augustin et al. 1996, Huffer and Wu 1998). The 

procedure is computationally intensive, however. The final models used in this study (see results) used a 



neighborhood 30 cells square. Using the same neighborhood for an autologistic analysis would require that 

each pixel be assigned a weighted average based on values in ca. 900 neighboring pixels. The data sets 

used in this study would require roughly 186,500 and 438,000 such calculations to prepare the data, a task 

- ~~ - - - - - -  

thatis-computationall y-prohibitive at- ths=tirne.~-More fundamental!~, these_m~de&~~cou&al~ &said* -- ~= 

suffer from the "glorification of the particular" (Roughgarden 1983); they are so closely tied to the area 

modeled that they lack generality and cannot be readily applied to other areas. 

Generalized linear mixed models (GLMM's) that incorporate spatial autocorrelation build spatial 

covariance models based on prediction error from the main effects model rather than including a spatial 

predictor in the main model itself. Spatial GLMM's can be further divided into two groups, those with a 

marginal specification that model spatial covariance separately for each observation (McCullagh and 

Nelder 1989, Liang and Zeger 1986, Gotway and Stroup 1997) and conditional models that assume that the 

data are conditionally independent with constant variance and use a global spatial covariance model 

(Gotway and Wolfinger in press). The former approach attempts to directly specify the marginal moments 

for each observation, while the latter uses a conditional specification based on an underlying spatial 

process, and is a model for the mean response rather than the individual response. Marginal models cannot 

be used at this point on data sets as large as the ones considered here using current applications and 

computing technology (Marcia Gumpertz, pers. comrn.). In addition, they do not provide estimates of the 

standard error of regression coefficients derived by maximum likelihood. 

Conditional spatial GLMM models, on the other hand, provide maximum likelihood-based 

estimates of standard error and can be implemented using readily available software and estimation 

methods that are stable and robust on large data sets (Littell et al. 1996). The spatial extent of the study 

areas considered is still too large to be modeled as a single entity, but the analysis allows the area to be split 

into blocks that are used as subjects for global spatial and main effects models. In this way, the generality 

of the model may be fbrther improved. 

The conditional spatial correlation model is used to alter the error surface minimized in the main 

effects model, removing the effects of spatial correlation from the main model rather than incorporating 

them as autologistic models do. In this way, the spatial particulars of the study area are not "glorified," but 

rather treated as a nuisance and accounted for so that specieskabitat relationships that are not confounded 



by spatial correlation are revealed. This allows the model to be more transportable; even though it is still 

based on a particular set of conditions, the fact that spatial relationships have been accounted for and at 

least partially removed allows models to be compared and extrapolated between areas wlth more reliability. 

A spatially adjusted regression model takes the prediction errors from the main model, which will 

initially predict occupancy in far too many marginal cells, and estimates separate components for spatial 

and model-related error. This allows the habitat quality effect of occupied marginal cells to be 

distinguished from the effect due to close proximity to occupied, more suitable cells. When the main model 

is adjusted based on the fitted spatial cova'riance model, the effects of SAC are removed, and the influence 

of sub-optimal cells on model specification is indirectly minimized. The final model estimates the 

coefficients associated with habitat variables more accurately and therefore defines habitat more precisely 

than a non-spatial model could. Spatially adjusted models also provide more realistic estimates of model 

and coefficient error. 

It is important to note that there will be error in the output of any model that predicts the space use 

of a colonial species based only on habitat attributes and associated habitat occupancy patterns. In prairie 

dogs, space use is influenced not only by habitat quality and social behavior, but also by the historic legacy 

of past occupancy. The models used in this research incorporate measures of habitat quality directly, but 

social characteristics and historical factors are incorporated only indirectly. Social characteristics are 

modeled through spatial correlation models, and the historical factors of past prairie dog poisoning and 

shooting through using the proxy variable distance to private land. Needless to say, these are crude 

approximations of an intricate reality, but the point of this study is to explore whether these approaches are 

adequate to improve model performance and increase our knowledge of prairie doghabitat relationships. 

In the absence of detailed, long term field data to model habitat use and selection, these models represent 

the best way to incorporate these patterns. 

Spatial Modeling and Scaling Zssues 

% The first step in creating a spatial model is deciding the scale(s) at which to study the phenomenon 

of interest. This is driven by theoretical and practical considerations, but must ultimately make biological 



sense if the model is to be useful. Related to this is the choice of whether to employ a vector or raster- 

based analysis. Vector analyses are based on the attributes of a collection of polygons that are created based 

on features of the mapped area (e.g. dominant vegetation), while raster data are created by artificially 

~~dividing~the~map-into-individual-cellsof=equalsize-and assigning=habitat=values-to-individual=eells;-Vector-==- 

based analyses are intuitively appealing since they categorize a map feature uniformly within the 

boundaries of the polygon. Raster-based analyses, on the other hand, offer easier data collection and 

quantitative analysis. The choice between the two is often dictated by available data but should also be 

based on the phenomenon being modeled. 

The scale of observation used to study many organisms that occupy habitat in a non-random 

fashion is that of an individual unit, or patch, of habitat. This unit can be defined independent of 

knowledge about organism occupancy for many species, assuming an a priori knowledge of the biotic or 

abiotic characteristics of a species' habitat. Some of these species, such as butterflies that occupy meadows, 

frogs that occupy ponds, and owls that occupy remnant patches of old forest, have been successfully 

modeled at the habitat patch scale using spatial models (Noon and McKelvey 1992, Hanski 1994, Hanski et 

al. 1996, Sjogren-Gulve and Ray 1996). Prairie dogs, in contrast, occupy a relatively homogeneous area 

with a high proportion of areas that could be occupied. Even though habitat quality is likely quite 

important for habitat occupancy, relevant habitat traits vary along gradients, and the habitat patch is 

nowhere to be found. Habitat suitability for this species cannot be defined independent of habitat 

occupancy, and this makes the habitat patch an invalid grain size at which to gather and process data. 

Another option is to let the organism define the scale, quantifying habitat covariates and 

occupancy within individual polygons defined by the organisms themselves. This choice is intuitively 

appealing, but tremendously complicates data collection and analysis. For example, the coterie would seem 

to be an appropriate scale of observation, but coteries are irregular in shape, change unpredictably over 

time and space, and do not necessarily have a coherent identity over time. The same could be said of 

colonies, which have even less identity as a spatial whole. Prairie dog colonies move around the landscape 

over time, expanding, contracting, changing configuration, dying, connecting, and separating. In many 

cases, it is impossible to say where one colony begins and another ends. Also, habitat attributes such as 

slope are scale dependent, and would likely lose most or all of their information content through averaging 



Modifications Inspired by Initial Model Evaluation 

Spatial model error adjacent to private inholdings within Conata Basin was high, and this 

introduced doubts about the way distance to private land had been quantified for use in initial models. AS 

previously mentioned, this area is managed as a black-footed ferret reintroduction area. Since prairie dogs 

are the obligate prey species of the black-footed ferret, shooting has been ~rohibited in this area since 1994, 

and prairie dog poisoning is limited mostly to areas on the edges of the basin that are adjacent to private 

land. Even though there are a few private inholdings, these areas received very little poisoning, were 

generally not fenced off from publicly owned areas, and were managed in a manner similar to publicly- 

owned areas. Given this, it made little sense to use distance from these areas as a predictor of suitability. 

Similarly, prairie dog control did not occur on the grasslands adjacent to Badlands National Park, where 

prairie dogs are protected. These areas were removed as sources for distance calculations, new distance 

data were created, and estimation was repeated using the new distance data along with the predictors &om 

model 3 and the predictors from model 4. These models were called models 5 and 6, respectively. 

Model predictions improved around private inholdings as a result of these changes , but error still 

occurred in areas adjacent to private land at the edges of the study area. Figure 28 shows results for model 

5, which had the best AIC of the two (model 5 AIC = 400351, model 6 AIC = 400386). Based on firther 

examination of errors around the edges of the grassland, it was unclear whether removing the distance to 

private land predictor would improve or degrade overall performance. It was suspected that, like 

precipitation, the distance to private land variable had been retained in the model because it increased 

predictions of unsuitable habitat in unoccupied areas at the expense of increasing false negative errors. 

Spatially, the predictor seemed to be creating a halo of error around the edges of the study area, with a high 

proportion of unsuitable habitat predicted in these areas and a low proportion in interior areas. 

Biologically, it was clear that many areas adjacent to private land were suitable since they were 

occupied at some point; otherwise, they would not have been poisoned. Poisoning no longer occurs on the 

grasslands, and studies have shown that prairie dog populations are capable of recovering within a few 

years in areas where they have been exterminated (Uresk and Schenbeck, 1987 ). Areas are not poisoned 

unless they are occupied, and poisoning is obviously closely related with habitat occupancy, since only 



trend in the response and improving negative predictions at the expense of positive ones. Doubts as to the 

biological validity of this predictor as well as its suspected link to region-specific loss of model sensitivity 

warranted its removal. Model 3 is estimated without precipitation, and Model 4 also removes high mean 

- - - - - - =clay content of all~soilLhorizo_ns _ _ _ _ _  _ --- ____ - -  p -- -- 

All four models were estimated using both 900 m and 1200 m spatial block sizes. Comparison of 

spatial models 1-4 using AIC (Table 12) revealed that when the same model was calculated using different 

spatial block sizes, those 900 m spatial blocks explained the data much better. Within this block size, 

model 3 was the best spatial model of the four. This model was selected for comparison with a) the model 

that would have been chosen using non-spatial analyses and b) a non-spatial model using the predictors in 

model 3. Note that this last model is a by-product of the spatial analysis, since the spatial analysis was 

necessary to select the variables used. 

Comparison of AIC values from these three models (Table 13) demonstrate a dramatic 

improvement in AIC value when the spatial model is used. The probability (w, ) that the spatial model is 

the best fit to the data is close to 1.00. Regression coefficients associated with the various predictors also 

changed dramatically between the final spatial model and its non-spatial counterpart, indicating that 

modeling spatial covariance has a large effect on overall model results. Maximum likelihood estimates for 

spatial model 3 are shown in Table 14. The next step was to determine how these differences between 

models translated into differences in predictions on modeled data. 

Initial Model Evaluation 

The false negative prediction error rate of the full non-spatial model seemed to have little 

relationship with the spatial context of colonies, whereas those of spatial models often occurred at the edges 

of colonies and showed specific spatial patterns (Figs 26 and 27) . These patterns motivated further 

modifications, as described below. 



su~table and occupied areas) is encouraging. Plotting model predictions on the map shows that the spatial 

model only roughly approximates patterns of observed prairie dog habitat use, however (Fig. 25). The 

model has a highly negative intercept, requiring that the cut point be adjusted unusually low (0.008) in 

order to maintain 95% sensitivity. This results in poor ability to discriminate unsuitable areas. The 

relatively poor performance is not surprising given the final set of predictors used. Two of the three 

(d~stance to private and estimated annual precipitation) describe habitat quality quite indirectly if at all. 

The improvement in fit using a simple spatial model instead of a more saturated non-spatial model was 

encouraging, but model results indicated that there was a need to develop further predictor variables and 

improve the accuracy of existing ones if possible. Variables were modified, replaced, and augmented as 

described previously in an attempt to improve model performance on the Conata Basin dataset. 

Conata Basin 

The general approach to analysis of Conata Basin data was the same as that used for Fort Pierre 

except for the elimination of preliminary stepwise regression models. As before, all candidate predictors 

were highly significant in the non-spatial logistic regression analyses; in the spatial models that followed, 

predictors were removed in steps. Table 11 shows the predictors highly significant in the non-spatial 

models and those included as candidates for the initial set of spatial models. The first spatial model (Model 

1) had half the number of predictors used in the non-spatial models. Model 2 is the same as 1 except for 

the removal of % silt and clay of the top soil horizons. 

All the Conata Basin models described above used precipitation data, and all had fairly poor 

sensitivity in the eastern parts of the grassland. Further examination revealed that habitat occupancy and 

precipitation data had a similar overall trend of decrease fiom west to east, a trend that was reflected in an 

increase in false negatives from west to east The precipitation trend was similar to that observed in the Fort 

Pierre data, but the regression coefficient associated with precipitation changed sign between study areas, 

an indication that it had no clear relationship with habitat suitability. Even though precipitation had an 

obvious negative effect on prediction of suitable areas, it was likely significant due to the fact that it 

identified much of the eastern sections of the grassland that were unoccupied as unsuitable, mimicking a 



Spatial analyses on the Fort Pierre data initially included all highly significant predictors from the 

non-spatial logistic regressions. A subsequent correlation analysis on selected predictors revealed that the 

three predictors that describe clay content of all soil horizons (none of which were significant) were so 

highly correlated that they could not be used together. Regression analyses on highly correlated predictors 

introduce error into the model by distorting estimates of regression coefficients and standard errors (Neter 

et al. 1989). It was necessary to select one of these predictors to include in the model and remove the other 

two. The predictor that describes the highest clay content of all soil horizons in each map unit was retained 

based on its p-value, but it remained insignificant when a reduced spatial model was calculated. 

Many of the predictors that were highly significant in the Fort Pierre non-spatial models became 

insignificant when spatial correlation in model errors was used to adjust the main effects model. 

When these terms were dropped from the model, only three variables remained: mean clay content of the 

top soil horizon, estimated annual precipitation, and distance to private land. As previously mentioned, 

none of the models calculated with different block sizes using Fort Pierre data can be directly compared 

using AIC. Spatial models calculated using 900 m spatial blocks were used as the final models for 

comparison purposes because this block size produced the best AIC values on the second study area, where 

performance could be quantified. AIC values for the spatial model with significant predictors, the non- 

spatial model with the same variables, and the full non-spatial model are shown in Table 9. Based on AIC 

values, the estimated probability w, (Burnham and Anderson 1998) that the reduced spatial model is better 

than the others exceeds 99%. 

Accuracy statistics produced through resubstitution analysis on the modeled data (Table 10) show 

that when correct prediction of occupied areas (sensitivity) is held at 95%, the spatial model has roughly 

double the rate of false positive errors, but one third the amount of false negative errors. False positive 

errors cannot be verified, as discussed below, but the lower rate of false negatives (i.e. failing to detect 



intensitylpasture area and the interaction between distance to private land and poisoning probability, but all 

other terms were highly significant (p < 0.01) and were retained in the model. 

This model with interactions was then compared with one that included only the significant main 

effects (Table 6). The larger model did not appear to have greater explanatory power based on the 

estimates for percent concordance (86.5% vs. 86.6%), the percentage of response pairs properly identified 

if all possible outcomes from the model are paired and compared to what was observed. Interaction terms 

in the full model also had unreasonably large coefficients and standard errors, an indication of model 

overfitting (Hosmer and Lemeshow 2000); when they were included, the standard errors associated with 

main effects were larger. For these reasons, interaction terms were removed. 

Further output for the main effects model (Table 7) shows that the Wald and profile likelihood 

confidence intervals for the odds ratio estimates do not include 1, so there is a 95% probability that there is 

a difference between the predicted response as the level of a each predictor changes. The three tests of the 

global null hypothesis also show that at least one coefficient is significantly greater or less than zero; the 

model predicts with greater accuracy than one could by guessing. The model is not sound, however, and 

the statistics are misleading. A concordance rate like that observed could be produced by a model that 

predicted no habitat occupancy correctly. The Hosmer and Lemeshow goodness-of-fit test shows a 

significant amount of variation in the model that remains unexplained, and the classification table (Table 8) 

demonstrates a high degree of false predictions and'lack of discrimination. Confidence intervals are 

actually much wider for reasons mentioned earlier. The use of an inadequate analysis framework obscures 

information that might be available if spatial correlations in model enor were incorporated. 

Variogram analysis of model residuals (Fig. 10) showed error was spatially correlated to a 

distance of roughly 700 m. This distance was used as an initial range estimate for subsequent spatial 

models. 



RESULTS 

NON-SPATIAL ANALYSES 
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Linear regression models of proportional occupancy using all habitat predictors and no 

interactions performed poorly. Even though all terms except one interaction ( slope * mean %clay) 

remained after stepwise selection and were highly significant, the linear model explained only 55% of the 

variability in the response, and the standard errors of the parameter estimates were large (Table 5). 

Boxplots of residuals from this model at all levels of observed occupancy (Fig 12) show that the model 

predicts unoccupied areas fairly accurately, but shows an increasing trend of over-prediction as observed 

occupancy increases. 

Boxplots summarizing the range of values of each predictor at various levels of the response (Fig 

13-24) hrther demonstrated that the data did not support modeling occupancy as a proportional response: 

none of the terms in the model demonstrate a linear response with occupancy. Examination of the boxplots 

with a binary response in mind, however, revealed strong patterns for some predictors. Precipitation and 

poisoning both have a strong positive relationship with the response, while occupancy and the clay content 

variables were clearly negatively related. Livestock stocking levels (recommended and actual) and slope 

had a weak negative correlation with occupancy, and standard deviation of mean stocking intensity and 

distance to water and private land had little apparent relationship with occupancy at all. Based on these 

results, the use of a binary response variable and logistic regression model for additional analyses was 

justified. 

Stepwise logistic regression using all the interactions and main effects in Table 3 was used to 

eliminate any extraneous predictors. In the initial model run, the program detected a quasi-complete 

separation of data points and failed to converge to a solution. This error was caused by the poisoning 

predictor, which by definition was zero for all unoccupied areas (an area had to be occupied to be 

poisoned). With no overlap between the distribution of the covariates between two outcome groups, 

maximum likelihood estimation cannot proceed (Hosmer and Lemeshow 2000), so it was necessary to 

remove poisoning from the model. Stepwise selection also removed the standard deviation of stocking 



was removed, and several variables that became insignificant in the process were also removed. Details are 

given in the results section. 



95% sensitivity (correct prediction of occupied areas). Commission error, predicting occupancy for 

unoccupied areas, is higher in all models as a result, but this type of error is expected due to the patchy but 

temporally dynamic distribution of prairie dog colonies. Given this dynamic spatial distribution, only a 

- -- - = - - -- - fiachon of suitable areas are expected to be occupied at any given time, and unoccupied areas are not -- -- 

necessarily unsuitable. - I 
Accuracy assessment statistics calculated after data resubstitution and cutpolnt selecbon can reveal 

important details about model performance, but some are misleading. For example, results of resubstitution 

analysis on the spatial and non-spatial Fort Pierre models (Table 9) indicate that non-spatial models 

generally have higher sensitivity when specificity is held constant, which in this case means they performed 

better at classifying areas that are unoccupied and possibly unsuitable. Higher specificity ratings may 

reflect an ability to identify unsuitable habitat, but they also may be a result of incorrectly identifying 

I 
suitable but unoccupied habitat as unsuitable. There is no way to verify whether or not areas are unsuitable I 
when suitability is only known in relation to observed prairie dog habitat occupancy, especially in a species 

that is known to occupy only a fraction of available habitat at any given time. Similarly, statistics based on 
I 

overall accuracy (e.g. Kappa) are not useful when accuracy in one component of a binary response is a 

priority and accuracy in the other component is also important, but impossible to verify. 
I 

False negatives are easily confirmed, however, since by definition occupied areas are suitable. I 
They are also the most important type of error to minimize in a model that attempts to define suitable 

habitat for the black-tailed prairie dog on those public lands essential for the conservation of the species. 

This species has lost at least 98% of the habitat it occupied before the arrival of white settlers in North 

America, and most of that habitat now provides irreplaceable food resources and probably will never be 

reclaimed. The top priority in this situation is to identify suitable areas on public lands that remain so that 

they all may be included in habitat assessments. Minimizing false positive errors at a set level of sensitivity 

(95%) was therefore the focus of quantitative model evaluation. 

Map-based evaluation focused on comparing the spatial pattern of model errors at individually 

I 
determined cut points. Patterns in model error prompted the elimination and modification of several 

additional predictors. Estimated annual precipitation was removed, distance to private land was modified 

I 
to exclude National Park areas and inholdings as sources for distance calculation, distance to private land 



square) while maintaining identical output data sets. These spatial models may be directly compared with 

each other using AIC. Non-spatial models were subjected to the same 900 m spatial blocking code and 

analyzed using a non-spatial version of the same routine as the final spatial models, so these results are 

directly comparable as well. 

Evaluating Model Outr>ut 

In general, model performance may be evaluated by predicting the response for the full data set 

used to build the model (resubstitution or verification), for portions of the original dataset 

(crossvalidation), or for independent data sets (validation). Model validation between study areas could 

not be supported due to previously mentioned differences in the input data. Crossvalidation requires 

. repeatedly excluding different portions of the input dataset, recalculating the model, and predicting for the 

data excluded. This approach was impractical since performing the number of model runs necessary to 

complete a single crossvalidation analysis would take months or years with the computing resources 

available. Validation of the final Conata Basin models was possible only for areas immediately adjacent to 

Conata Basin where prairie dog habitat occupancy and habitat covariate data were developed. 

Given all these restrictions, resubstitution using the modeled dataset was the main method used to 

evaluate model performance. Predictions using the logistic regression equation are first transformed 

through the logit link function 

where q is the linear predictor produced by the logistic regression equation. The results of this 

transformation range from 0 to 1, and must be reclassified back to a binary response to compare them with 

the original data. 

The cutpoint used to classify model predictions has a strong effect on performance, and can only 

be optimized for one type of error at a time. In this study, it was most important to minimize omission 

error, the failure to predict suitability for areas that were occupied, so cutpoints were optimized to maintain 



blocks). Models using block sizes of 1500 m on a side were attempted, but these required excessive 

computing time and could not be estimated with available computing resources. 

Spatial blocks for each model run were defined within the SAS code using the map coordinates 

__ - -associated_with-each ohservation~(UTM_F.asti~1g~and~Northing).= This-code-uses mhimum.and-maximum=- 

coordinate values along with user-specified values for the number of cells allowed in each dimension, 

assigning a block number to each observation using mathematical formulas and effectively dividing the 

area into symmetrical blocks. The nature of this blocking code made it impossible in some cases to 

compare models quantitatively using Akaike's Information Criterion (AIC) or similar measures because the 

data sets used to calculate the models sometimes varied with spatial block size. 

The problem is illustrated in Figure 1 1 

using a small section of Fort Pierre grassland. The blocks contain various numbers of 

observations based upon the amount of area within the block that was included in the analysis: if most of a 

block has been masked out because it is composed of non-habitat, that block will have few observations 

within it. Blocks with less than 20 observations must be excluded from the analysis, or convergence 

problems may result. When different block sizes are used to divide up the same area, different pieces can 

be included or excluded. Figure 10 shows occupied habitat in red, unoccupied habitat in white, and non- 

habitat excluded from the analysis in black. Spatial blocks are shown outlined in black. In the left. 

diagram, all observations within the 750 m square block adjacent to the number 3 would be removed from 

the data, even though cells occupied by prairie dogs are included in this block. The 1500 m block size on 

the right includes the same area but easily meets the 20 observation minimum criteria. In the dataset that 

uses this block size, all of these observations are included in the analysis. 

In general, more observations are excluded when smaller spatial block sizes are used, and almost 

none are excluded at larger block sizes. Unfortunately, it is virtually impossible to control where these 

deletions occur. This problem was most evident in the Fort Pierre study area, which is highly dissected 

with areas of non-habitat. In this area, the data sets produced by the spatial blocking code varied by a few 

thousand observations between block sizes. Even though these differences amounted to less than 1% of the 

total sample size, the models cannot be directly compared. In Conata Basin there is only one major private 

inholding, and it was possible to implement the blocking code for two block sizes ( ca. 900 m and 1200 m 



Given these computational limitations, the only way to make the modeling process viable was to 

divide the study area Into blocks and use these as subjects for the spatial models. Thls extension of 

repeated measures design incorporates variation in two spatial dimensions instead of one temporal 

dimension, analyzing the repeated measures to produce global models for spatially correlated errors. These 

errors are quantified iteratively for each block in the dataset, and the global spatial model produced at the 

end is used to adjust a main effects model based on the entire dataset (ignoring the spatial blocking 

structure). The spatial model used for adjustment on the first iteration is created with user-specified 

distance parameters estimated with variogram analysis as described above. After the main effects model is 

calculated, the process repeats, using the error matrix from the first global iteration to refine the spatial 

covariance model and then the main effects model. In effect, there are two sets of iterations involved. The 

first set is used to calculate a global spatial model to adjust the error surface associated with the main 

effects equation. These iterations are nested within a second set that repeats the entire process, refining 

both the spatial and main effects models (as described above in the theory section) until convergence. The 

estimation procedure is described in Table 4. 

This design, inspired by necessity, may actually lead to more general results. Previous spatial 

analyses using Proc Mixed have indicated that a spatial extent of roughly double the range is usually 

sufficient to capture spatial variation (Rudy King, pers. comrn.). Extending the side dimensions of the 

spatial blocks past thls range would not be expected to add explanatory power to the model, and could even 

detract fiom model performance by including too much spatial information at scales irrelevant to prairie 

dog habitat occupancy and "glorifying" the particular spatial pattern found in a dataset composed of a few, 

very large spatial blocks. In this situation, generalizing multiple small snapshots of spatial covariance into 

a single model rather than using one vast snapshot may be more robust. 

Altering the size of the blocks used to calculate the spatially-adjusted models changes the extent of 

the spatial analysis window, dividing the study area into greater or fewer "snapshots" of data for analysis as 

individual subjects. Changing block size would be expected to affect calculations of spatial covariance, but 

the potential effects on predictor variables and their coefficients are not as clear. In order to explore how 

variation in spatial block size affected model output, separate spatial models were estimated using blocks of 

approximately 750,900, and 1200 m on a side (these will be referred to as 750, 900, and 1200 m spatial 



The spatially adjusted regression analysis described above represents the simplest way to account 

for the spatial correlations inherent in the dataset. Accounting for these correlations is necessary because 

the data violate the assumptions required by non-spatial linear and logistic regression analyses, and produce 

~- -- - - - - -  ~ - -~ -- - - - inaccurate_and~invaljd results whenthese methodsa~used.  More coOmp~ex_sp~t~a1 analy~eshanthe ones 

currently considered are theoretically possible, but not currently practical on large data sets like the ones 

used in this study. In addition, software to implement these analyses is not readily available. The spatial 

analyses provided by Proc Mixed with the Glimrnix macro (SAS 1999) represent the only existing 

commercial software capable of a landscape level logistic regression analysis using a spatially adjusted 

model. 

Spatial modeling is always a compromise between fitting the data at hand as accurately as possible 

and attempting to extract general models from specific situations. The aim of this model building exercise 

tends toward the latter; the purpose is not to predict the response of prairie dogs extremely accurately on 

any given 30 m square of the grasslands, but to discover the relative importance of known habitat attributes 

in order to create general models of how habitat attributes and patterns of prairie dog habitat occupancy are 

related. Modeling spatial covariance as a repeated measure in space could be an effective way to obtain 

that generality. 

Implementation 

Spatial analysis using Proc MixedIGlirnmix is an iterative procedure with a large number of 

computations; each analysis can take weeks to complete. The procedure also requires large amounts of 

random access memory (RAM) since an NX N matrix (where N is the number of sites) must be held within 

memory for the duration of the calculation. Practical considerations related to these processing time and 

RAM requirements limit the extent of the geographic sampling frame that can be used for the spatial 

models to sizes much smaller than the study areas. Randomly subsampling 50% and 75% of the data from 

the full dataset was investigated as a way to increase the extent of the area used to build spatial models and 

maintain reasonable sample sizes, but repeated analyses using different samples drawn from the same data 

showed unacceptable variation in regression coefficients and their standard errors between samples. 



concluded that the impact of the specific function used in the spatial model is typically negligible as long as 

a reasonable model with appropriate parameter estimates is used. The analyses performed for this research 

all use a spherical model, which may be expressed as 

where p is the range of spatial correlation and the function 1 (d, < p ) equals 1 when d, < p and 0 

otherwise. 

The spatial correlation model f ( di, ) is estimated using generalized least-squares (GLS), which 

minimizes the expression 

The matrix V in the above equation is the variance of y, and is equal to 

Knowledge of V thus requires knowledge of G and R, which are unknown but may be estimated using 

likelihood-based methods that exploit the assumption that e and u are normally distributed. The software 

used to implement the analysis (SAS Proc Mixed) creates an objective function associated with maximum 

likelihood (ML) or restrictedfresidual maximum likelihood (REML), maximizing it over all unknown 

parameters to estimate G and R. Estimates of p and u are obtained by solving the standard mixed model 

equations. When the GLIMMIX macro is used with Proc Mixed, the variance function R, , which is based 

upon a spatial model, is used as a weight and the linear predictor y* replaces y in the mixed model 

equations. Proc Mixed is called iteratively and implements the two estimation methods described above 

until the relative deviation of the variance/covariance parameter estimates indicate convergence. This 

estimation method is called pseudo-likelihood (PL) or restricted pseudo-likelihood (REPL), and is 

described in detail in Wolfinger and O'Connell(1993) and Littell et al. (1996). 



where ei is the error associated with y; .  the i"' observation ofy. The spatial component is defined by letting 

I 

where dij is the distance between site i and site j. The spatial function f ( 4)  is the same for all pairs of 

equally distant locations ( i.e. it assumes stationarity), but may incorporate the influence of direction 

(isotropy) if desired. 

The spatial covariance models used by Proc Mixed rely on semivariance statistics originally 

created for predicting ore deposits in mining operations (Matheron 1963, Joumel and Huijbregts 1978, 

David 1977). These are calculated by taking the variance between each possible pair of observations in a 

study area and sorting them according to distance. Variograms expressing the sum of squared differences 

between all observations (y) within each range of distance (x) are used in this analysis to provide the initial 

estimates of c2 and p required for the spatial models. These correspond to the sill and range of a 

variogram, respectively (Fig. 10). The sill of a variogram is the average semivariance observed between 

observations that are at or beyond the range of spatial correlation. The range of the variogram is the 

distance to which habitat occupancy is correlated; beyond this distance there ceases to be a relationship 

between distance and semivariance. This quantity is used to define the minimum block size needed to 

capture spatial variability. The nugget is the variance between observations that are adjacent, and 

represents variability in habitat occupancy due to process or measurement error. High nugget variance 

suggest that the pattern varies at a finer scale in space than the sampling scheme or that the pattern is 

inherently heterogeneous. 

The shape of the variogram produced by the data is used to define the general function used to 

describe spatial dependence. Proc Mixed is capable of using several forms of spatial models, including 

spherical, exponential, gaussian, linear, linear log, and power functions. Littell et al. (1996) duplicated 

spatially adjusted regression analyses with Proc Mixed using different models on the same data, and 



design matrix, u is a vector of unknown random-effects parameters, and e is an unobserved vector of errors. 

These models are referred to as "mixed" because both fixed and random effects can be used, though 

random effects are not employed in the current analysis. Spatial covariance is modeled through analysis of 

correlations in the error term e using the R matrix, the matrix that defines the error expected due to SAC. 

The vectors u and e are assumed to be normally distributed with 

E [u] = 0 and Var [u] = G 

E [el = 0 and Var [el = R 

R is calculated by defining an NX N matrix F, where N is the number of pixels and each ijfh element f ( dV 

) expresses covariance for each site as a function of distance from every other site. R is given one of two 

forms based on the observed variation in the response at the smallest lag distance (30 m). If the observed 

variance at close range is low, the model with no nugget variance (see below) 

is appropriate, otherwise 

is used, adding the nugget variance to each element in R. In these equations, 02 is the deviance between 

observations that are far enough apart to be unaffected by SAC. The calculation of R thus involves 

multiplying each element of the matrix F by the estimated variance between observations too distant from 

one another to be spatially correlated (deviance). 

The basic form of the spatial correlation model is 

yi = p + ei 



independent variables in a model that fails to account for spatial autocorrelation can be highly significant 

yet have little predictive power. The results of these non-spatial linear and logistic regression analyses 

justified the use of a spatially adjusted GLMM analysis. 

Theory 

Model errors like those described above are expected when the model fails to incorporate spatial 

autocorrelation in the response. In this case, it is suspected that habitat of lesser quality may be occupied 

more frequently than would be expected when it is located next to high quality, occupied habitat. 

Conversely, high quality habitat may be unoccupied if it is far from occupied areas. If this is not accounted 

for in habitat suitability analyses, occupied low quality habitat is treated as equivalent to high quality 

habitat, producing bias in estimates of the coefficients associated with habitat attributes and reducing the 

precision of estimates of the response. As the number of predictors in a model increases, the potential 

importance of accounting for spatial variability in the data also increases (Littell et al. 1996). In this 

context, models that adjust for spatially correlated error produce more accurate and unbiased estimates of 

the relationship between habitat attributes and habitat occupancy. 
- ---- 

The spatial models used in this analysis divide the study area into blocks and use these blocks as 

subjects for a global spatial covariance model. The analysis uses a formulation of the generalized linear 

mixed model (GLMM). Mixed models relax the assumption of independent and identically distributed 

Gaussian random errors made in the general linear model, allowing for heterogeneous variances and 

correlated errors. The mixed model is written as 

where y is a data vector transformed using a differentiable monotonic link function, X is a known matrix of 

explanatory variables, P is a vector of unknown fixed-effects parameters, Z is a known random effects 



DATA ANALYSIS 

Non-spatial Models 

The Fort Pierre data were initially processed for analysis by creating grids with nonzero values for 

occupied areas and zeros for unoccupied areas, with nonzero values in each grid corresponding to the 

length of time between the current and subsequent census. When added together and divided by the total 

number of years, the proportion of time a cell was occupied during the time series is estimated. This 

operation is not completely realistic because it assumes no changes between censuses, but it was thought to 

have the potential to provide more information than a binary response if supported by the data. Using the 

Fort Pierre data, preliminary statistical models were fit to this proportional response in order to identify 

weak predictors and establish the need for more complex models. These data were suitable for analysis 

with ordinary linear regression and spatial autoregressive models, and it was necessary to establish that 

these methods were not sufficient before pursuing more complex analyses. The results of these preliminary 

analyses proved that analysis with a proportional response was not supported by the data (see results) and 

justified the use of a binary response variable and logistic regression. The analysis process used on the Fort 

Pierre data set is presented in Figure 9. 

Classifying occupancy as binary rather than proportional eliminates the need to model temporal 

autocorrelation because frequency of occupancy is no longer considered. It also allows the analysis to be 

readily implemented using available software that produces goodness of fit statistics for model evaluation. 

Perhaps most importantly, it eliminates the need for the troublesome assumption that there have been no 

changes in occupancy between censuses, since it is only necessary to know which pixels have been 

occupied at any time during the time period studied. These practical considerations also made logistic 

regression more appropriate as an analysis tool. 

Simple logistic regression first was used to check the performance of a non-spatial model and 

screen variables for use in the initial spatial models. All predictors tested were highly significant, and 

model concordance statistics were good. Classification table results show that the model performs poorly 

when it comes to predicting suitable habitat, however. As previously discussed, Figure 6 shows how 



Two Images (August 6, 1991 and August 22, 1997) were selected for Conata Basin based on these 

conslderatlons. These acqulsitlon dates fall near the two endpoints of the occupancy time series, and may 

I 
not be representatwe of lntervenlng condit~ons, but they represented the only high-quality data available 

- - Thc red and near-~nfrared bands of these Images (bands 3 & 4) wereconverted mnto-&cI& grids, and 

I 
NDVI values were calculated for both using the Map Calculator m Arcview (ESRI, 1999). The average of - m  
values from both years was used as a predictor in the models 

Converting Coverages to Input Data 

All data layers were ultimately converted into co-registered grid coverages. Areas to be excluded 

from the analysis were delineated by creating a mask grid coverage. The following areas were removed 

using the mask grid: 

all private land and all pastures containing any pnvate land 

all wetlands, river corndors, and water features 

all wildlife areas, exclosures, and waterlots 

all areas with missing soils or other data layers 

- -0 a buffer of-1 5 m on each side of all primary roads and railways 

a buffer of 30 m on each side of all highways 

Data from each of the co-registered grids were extracted using the sample command in ArcInfo, producing 

delimited text files containing an easting and northing corresponding to the centroid of each grid cell 

followed by the value for that cell from each grid sampled. These files were imported into Arcview and 

converted to Dbase format for editing. Data fonnats were standardized, pixels with missing observations 

were removed, and the final data sets were imported for statistical analysis. 



Slope 

Slope data were created from digital elevation models (DEM's) produced by the USGS 

(U.S.Department of the Interior, U.S. Geological Survey, 1992). DEM's are created from a sampled array 

of elevations from some number of ground positions at regularly spaced intervals. The slope data used in 

this study were created with a 7.5-Minute DEM's created using a data spacing of 30- x 30-m and elevation 

values determined by manual profiling using photogrammetric stereo-models. Limitations in the spatial 

resolution of these DEM data have implications for the insignificance of this predictor in the final models, 

as discussed below. DEM data were converted to floating point slope grids using Arctools-grid for use in 

the models. 

The Normalized Difference Vegetation Index (NDVI) is a ratio of the red and near-infrared bands 

of a satellite image that is designed to detect green vegetation. Due to data availability, this index could be 

used on the Conata Basin analysis only, as discussed above. Landsat Thematic Mapper (TM) images of 

this study area were selected for use in the analysis based on several criteria. 

Images with any cloud cover obscuring the study area were rejected. 

Discrimination of grassland vegetation types is clearest for images acquired in late summer or 

early autumn (Mike Morrison, pers. comm.); only images from these time periods were 

considered. 

Imagery used to compare or average index values between years should be radiometrically 

corrected to adjust for atmospheric influences and acquired as close to the same date as possible 

in order to minimize the confounding influences of atmospheric and phenological factors (Roger 

Hoffer, pers. cornrn.). Uncorrected images or images not acquired within three weeks of the same 

calendar date were rejected. 



ArcInfo (ESRI, 1998). This command creates grids of distance values using an input grid with non-zero 

real numbers for all sources and no data for areas for which distance values are desired. It was necessary to 

I 
repeat this analysis for each pasture to find distance to water within a pasture, using Forest Service 

-- - ~ -  ---- -- -coverages-of-livestock-water-developmentsand permanent-water-featuresfrom the -National-Wetlands=- - = 

I 
Inventory as sources instead of private lands. The repetitive nature of the water distance analyses I 
warranted writing a macro to automate the process (see appendix). I 
Use of Weather Data 

Weather station data (HPRCC, 2001) for stations adjacent to each study area were used to estimate 

precipitation values across the grasslands. Average annual values for each station were first calculated for 

the time periods studied, and inverse distance-weighted interpolation was used to estimate values for each 

pixel in the dataset. Although precipitation data does include moisture due to snowfall, the efficiency of 

snow capture by measuring devices is quite variable (Doesken et al. 1996). Snowpack data available for 

the study areas had too many missing observations, however, and Snow Water Equivalent (SWE) data 

needed to convert snow to moisture data were not available. 

lncolporating Actual Use Grazing Data 

National Grasslands grazing records were used to calculate animal unit months (AUM's) per unit 

area for all pastures. An animal unit month is the amount of forage consumed by a 450 kg beef cow (or 

bull) with or without a nursing calf in one month, which is estimated at 355 kg of dry forage per month or 

ca. 11.8 kg. per day. Grazing records showed the number of cows and bulls grazed in each pasture and the 

dates during which this occurred. These data were converted to AUM's and appended to the GIs coverage 

of pastures. Dividing the AUM's by the area of each pasture produces the predictor variable used in the 

analyses. 



pixels, so this predictor varies at a fairly coarse spatial scale. The Conata Basin analyses used prodnorm 

directly, dividing this quantity by soil survey polygon (map unit) area. Average size of a map unit in 

Conata Basin is ca. 20 ha or 222 pixels, and this predictor captures variation at a finer spatial scale. 

The predictors for estimated percent sand, silt and clay in the top layer of soil were generated 

using a lookup table created by Dr. Jan Cipra in the CSU Soil Sciences GIs lab. T h s  table uses the texture 

field in the database to estimate percentages for these three variables based on relationships observed in soil 

survey data taken throughout the United States. It is unknown how accurately the lookup table estimates 

these percentages for the soils in the two areas examined in this study, however. Also, this table became 

available after the Fort Pierre data analysis was completed, and was used only for the Conata Basin data. 

Creating Distance Related Predictors 

Studies of cattle distribution in relation to livestock watering points on arid rangelands indicate 

that cattle graze areas close to watering points preferentially (Andrew 1988, Owens et al. 1991). Prairie 

dogs are also known to respond positively to increased cattle grazing pressure (Uresk et al. 1981). Distance 

to water was used as a proxy for cattle grazing intensity differences related to distance from water sources. 

When pastures are fairly small and watering points are distributed evenly, livestock position within a 

pasture may be unimportant for water availability, and the relationship between this predictor and habitat 

occupancy would likely be weak. If distance from water strongly influenced the cattle grazing patterns, 

however, and if prairie dogs responded to these differences in grazing intensity, the predictor could be 

highly significant as a predictor of prairie dog habitat suitability. 

Distance to private land was included mainly to reflect the probability of poisoning in colonies on 

the National Grasslands adjacent to private land. Poisoning in the area has occurred in response to the 

complaints and legal actions of adjacent private landowners. This predictor may also incorporate shooting 

effects, or the decreased emigration that might occur when an area is adjacent to a hostile matrix where 

there are few colonies or none. 

Predictors that describe distances were created through analysis of existing data. Distance to 

private land was easy to calculate in one step by using the eucdistance command in the GRID module of 



same soil types present in the same proportions, and are distinct in this way from all other map units. The 

relationship between a map unit and soil polygons delineated within a GIs is a one to many relationship, 

with one to several hundred map units explaining soil patterns for entire survey areas (individual counties). 

- - -  

-The procedures used to perform a so11.survey are not_ea$Jy described, -. - - since they vary according to 
- - - - - 

the particular soils and related survey logistics of each area, and must be flexible in order to capture the - 
variation present in each particular situation. Even though the basic objective of soil surveys is the same I 
for all kinds of land, the number of mapping units, their composition, and the level of detail needed in 

mapping vary with the complexity of soil patterns as well as specific needs of users. Thus the specific 

methods used and the soil survey that results are matched to the soils and the soil-related problems of the 

area (USDA 1998). 

In general, soil samples are taken along a series of transects, with deep soil pits dug when 

necessary for more detailed analysis. Multiple soil samples within a map unit are designated using 

sequences. During a soil survey, map units on soil maps are constantly revised to reflect new information 

gained through the study of soil sequences. The end result is designed to reduce the bewildering number of 

soil types to a more manageable system of map units that can be practically used to assess soil properties 

for a wide range of purposes. 

Clay content is recorded in the database using the lowest value observed for each horizon in each 

sequence as well as the hghest. Predictors for the model were generated using these data by averaging 

low, mean, and hlgh clay content estimates for each soil horizon present in the map unit. Soil clay content 

predictors for the Buffalo Gap dataset were calculated by weighting the contribution of each sequence to 

the statistic based on its estimated proportion within the map unit. These data are more accurate than those 

used at Fort Pierre, which used a simple average of all sequences within the map unit and did not weight 

them by proportional area. 

Prodnorm is a field within the soil database that estimates the number of pounds of forage that 

could be produced annually within a map unit given normal growing conditions. This field was used by the 

NRCS to derive recommended animal unit months permitted within each grazing allotment. In the Fort 

Pierre dataset, NRCS recommended AUM's divided by allotment area was used as an index of soil 

productivity and a potential predictor of habitat occupancy. Mean allotment size is ca. 178 ha or 1976 



impossible to incorporate poisoning data, so distance to private land was used instead as a proxy variable 

for the probability of being exposed to poison. 

Modzfication of Soil Data 

The USFS soil data layer lacked detailed information about soils, characterizing areas based on 

range-sites. This classification system, used extensively in range management, combines information about 

the upper soil horizon, its climax vegetation, and land use. These data were inadequate for several reasons: 

they confounded soil and vegetation characteristics, ignored subsurface soil features, could not be 

translated into quantitative soil traits, and as categorical predictors had weak predictive power. It was 

necessary to restore the links to the NRCS SSURGO soil survey database from which h s  coverage was 

generated (USDA, 1997) in order to estimate more quantitative variables to use in model development. In 

order to link the two data sources, a field within the coverage originally created by appending two fields in 

the soil database needed to be created in the original soils data. This made it possible to relate map units in 

the GIs coverage to soil attributes quantified by soil surveys. 

Soil survey data provide a wide range of information for many different applications. Estimated 

clay content and soil productivity were the only variables that could be taken directly from the soils 

database that seemed relevant to prairie dog habitat suitability. Other soil variables used in the analysis 

were generated using lookup tables (see below). Clay content was summarized based on averaging values 

for all soil layers and for the top horizon only. 

Explanation of further differences between the clay content predictors requires a brief description 

of the SSURGO database and the soil survey methodology behind it. This database is created using soil 

maps that delineate the spatial distribution of different soil types. Each soil type has a unique set of 

interrelated properties and is a product of the parent material from which the soil formed, its environment, 

and its history. Soils are identified by names that serve as references to a national system of soil taxonomy, 

and are linked to geographic areas indirectly by using soil survey map units, which are collections of areas 

defined and named alike because they are similar in tenns of their soil components or miscellaneous areas 

or both (USDA 1998). Individual polygons that are designated as being in the same map unit have the 



DATA PREPARATION 

Fort Pierre prairie dog colony survey data for the years modeled, recorded by drawing polygons on 

custom paper maps of the grassland (ca. 1 :62,000 scale), were digitized using a digitizing table and 

georeferenced to produce GIs  coverages for the years 1975, 1977, 1980, 198 1, and 1983. Conata Basin 

occupancy data for the years 1990 and 1994 were recorded on several 1:24000 scale USGS 7.5 minute 

quadrangle maps or mylar sheets registered to quad maps. These were scanned at h g h  resolution and 

converted into geo-referenced image files so that more accurate on-screen digitizing techniques could be 

used. After digitizing, the individual quads were edge-matched and converted into a single GIs coverage 

for each year. Survey data fiom 199611997, previously digitized for another modeling study (Bevers et al. 

1997) were supplied by John Hof. All survey data were converted into ArcInfo polygon coverages, 

correcting spatial errors as needed. Further analysis of these coverages is described below. 

Quantzfiing Known Poisoning Events 

Grasslands personnel documented poisoning events on Fort Pierre during the time period modeled 

by referencing a colony number from the colony survey map of the same year and estimating the colony's 

total area as well as the area poisoned. These tabular data documenting poisoning events were used to 

estimate the poisoning probability within each colony for each poisoning event by dividing the estimated 

area poisoned in that colony by its total area. Converting these vector coverages into grids creates identical 

values in each cell that is within a colony boundary. The cell values correspond to the estimated 

probability that the cell of interest was poisoned in the year in question. When grids from a time series of 

years are added together and divided by the number of poisoning events, the cell-specific poisoning 

probabilities apply to the entire time period. These data were included in the model in order to account for 

changes that were known to have affected prairie dog habitat occupancy, but the fact that unoccupied areas 

were never poisoned made these data was incompatible with the estimation process. This made it 



METHODS 

Although they are within the same region and state, the two study areas are dramatically different 

in terms of their environment, management, and the data available to model prairie dog habitat suitability. 

The data used for the Conata Basin analyses were of higher quality for several reasons. Prairie dog habitat 

occupancy data for this area were recorded using tiled 1:24,000 USGS 7.5 minute topographic quadrangles, 

while at Fort Pierre lower resolution maps of the entire grassland were used as a base layer. Remotely- 

sensed data could not be used in the Fort Pierre analysis because the Landsat Multi-spectral Scanner (MSS) 

imagery acquired concurrently with the relatively old (1975-1983) Fort Pierre habitat occupancy data had 

insufficient resolution. Conata Basin habitat occupancy data, on the other hand, were acquired more 

recently (1990-1997), allowing the use of Landsat Thematic Mapper (TM) imagery with a 30 m resolution. 

In addition, Fort Pierre was the first study area modeled; the Conata Basin data set was prepared 

and analyzed with the benefit of that experience. Some predictors used at Conata Basin (% sand, silt and 

clay) were developed after the Fort Pierre data were finalized, and some were calculated in a more accurate 

way (clay content soil variables) than they had been at Fort Pierre. Finally, it 1s likely that the 

configuration of prairie dog habitat and habitat occupancy in Conata Basin lends itself to statistical analysis 

more easily than that of Fort Pierre, as discussed below. In the sections that follow, distinctions between 

the two data sets and their analysis are made as necessary; if no distinction is made, it may be assumed that 

the methods for each dataset are identical. The procedures used at Fort Pierre are presented in Figure 9. 

DATA ACQUISITION 

GIs data required for the models were obtained from various sources. Some data layers were 

created by modifying existing National Grasslands GIs coverages and converting them directly into grids. 

Tabular data in paper or electronic form were appended to existing GIs attribute tables to generate data for 

other predictors. Values for some predictors were estimated using interpolation of point estimates or GIS- 

based macros, and occupancy data were created from existing maps. Details about the development of 

different data layers for each predictor and the biological rationale behind each are given in Table 3. 



the combination of similar management histories within study areas that are fairly different in their ecology 

and physical structure was thought to provide an assay of the generality of model results, even though 

models cannot be directly compared between study areas due to differences in input data. 



INFORMATION ABOUT THE STUDY AREAS 

The Fort Pierre National Grassland (Fig. 7) is located in central South Dakota near the eastern 

limit of the Black-tailed prairie dog's range. The grassland is on the western side of the transition from 

mixed-grass to tall-grass prairie, and precipitation as well as productivity are relatively high compared to 

other areas where prairie dogs are found. Managed primarily for grazing, the grassland has a low 

concentration of prairie dogs, and occupancy is thought to be limited to areas grazed by cattle. A privately 

owned biological reserve within which prairie dogs are protected is adjacent to the northwest comer of Fort 

Pierre, and the Lower Brule Sioux Indian reservation is adjacent to the northeast comer'. Other than this, 

the grassland is surrounded by and dissected with private property where prairie dogs are actively 

controlled, and these areas are considered non-habitat for the purposes of this study. A time series of 

prairie dog colony locations mapped from 1975 to 1983 was available for this area. 

Conata Basin (outlined in red in Fig. 8) is an area within Buffalo Gap Grasslands in southwest 

South Dakota that is partially surrounded by the rock formations of Badlands National Park. This mixed- 

grass prairie is less productive than Fort Pierre and has more changes in topography due to badlands 

formations. The area has been a black-footed ferret reintroduction site since early 1994, and prairie dogs 

receive protection as the primary prey of this endangered species. The species is also protected in areas of 

Badlands National Park to the north. Prairie dog populations in Conata Basin probably have some degree 

of population exchange with colonies in adjacent populated areas, but this is not considered in t h s  study. 

Conata Basin, in contrast to Fort Pierre, has only one major private inholding, and habitat is far more 

contiguous in this area. Colony location data in Conata Basin collected from 1990-1 997 were used in the 

analyses. 

The history of the two areas is similar in terms of land use and prairie dog management. Prairie 

dog colonies were subject to poisoning and shooting before and during the time periods modeled in both 

areas, and each has a history of homesteading activity in the early 1900's , followed by a period of 

overgrazing. Grazing intensity in the past few decades has been lowered, and the management focus has 

recently shifted away from maximizing cattle stocking rates and toward sustainable use. The effects of this 

past land-use on prairie dog habitat occupancy during the time periods modeled is unknown. In general, 



values over space. These polygon definition ambiguities and averaging problems would likely introduce so 

much noise into the data that they would not be useful, and the modeling framework that could incorporate 

these ambiguities would be intractable. In fact, there may be no way to reduce the complexity of the spatial 

2pPa~ern_of=prairiedoghabitat use-to a-clearly-defined-set-of polygons at-any-spatial-scale;For=thesereasons,--= -- 

a cell-based, or raster analysis was chosen. Cell-based analyses reduce a continuous reality to one that can 

be modeled in a consistent manner, and define the unit of observation independent of current habitat 

occupancy patterns, avoiding the ambiguities inherent in observations quantified at the patch or coterie 

level. 

The cell size used in a raster analysis defines the spatial scale at which information is averaged 

into individual observations. The choice of cell size should be supported by objective biological criteria. 

Prairie dog feeding and affects vegetation in a radius of approximately 10-25 m fiom an individual burrow 

(Gold 1976). T h s  could be considered the minimum area of habitat that can be colonized by an expanding 

coterie, though average coterie size and estimated minimum colony size are roughly three times larger 

(Clippinger, 1989, Hoogland 1995). 

A grain size roughly equivalent to the average area around burrow openings that is affected by 

prairie dog grazing makes sense biologically and coincidentally, matches up well with constraints imposed 

by available data. This study used USGS DEM's and Landsat TM satellite imagery with a minimum 

resolution of 30 m. It is possible to resample these data to a coarser resolution, but this subsumes spatial 

variance w i t h  samples and averages it out of the analysis (Wiens 1989). Also, resampling inevitably 

increases classification error in the data, especially if raster cells are increased or decreased by a fraction of 

their former size (Heuvelink 1998). Increasing spatial resolution without using new data is, of course, 

impossible. In general, it is best to use these GIs data at their original resolution. Fortunately, this scale 

corresponded roughly with the area around a single burrow for which measurable grazing pressure occurs. 

Given the above considerations, the 30 m square pixel was the most practical choice for analysis. 



areas that are occupied by prairie dogs are poisoned. Distance to private land was created originally for 

models with a proportional response, and made some sense in that context, but it was possible that 

including it in binary response models was detrimental. These considerations made it necessary to 

estimate additional models using the same predictors as in models 3 and 4, but omitting distance to private 

land to explore the effects of removing this predictor. These models are called models 7 and 8. 

Of these two, model 7 had the lowest AIC value (Model 7 AIC=394837, Model 8 AIC=394852), 

and was chosen as the final spatial model. A non-spatial version of t h s  model was generated for 

comparison purposes (AIC=822532). Resubstitution results for these non-spatial and spatial models are 

shown in Figures 29 and 30. Even though the accuracy statistics are similar for the non-spatial and spatial 

model using the final set of predictors (Table 15), the non-spatial model is able to exclude less non-habitat 

from consideration at the same rates of error. Both versions of model 7 have a similar rate of false negative 

error, roughly 113 that of the full non-spatial model. Both reduced models have sensitivity and specificity 

similar to the full non-spatial model, but the rate of false positive errors of these models is roughly double 

that of the full model. It is unclear whether these errors represent bad predictions or merely suitable but 

unoccupied habitat; in terms of the types of model error that are verifiable, spatial model 7 is clearly 

superior to the others, and non-spatial model 7 is superior to the non-spatial full model. The regression 

coefficients and standard errors of model 7 are shown in Table 16. 

Validations of the final spatial model 

Performance of the final spatial model was validated by substituting occupancy data from the 

maximum recorded period of habitat occupancy in the area (1983) and visually examining model fit in 

modeled (Fig. 3 1) and unmodeled (Fig. 32) areas. Observed model fit was good, with a low rate of false 

negative error and good specificity. Model error tended to occur at the edges of colonies, and tracked 

colony boundaries fairly closely, unlike the errors of non-spatial models, which often seemed to have little 

relationship with habitat context. 



DISCUSSION 

"To do science is to search for repeated patterns, not simply to accurnulatefacts. " 
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I 
- - - -  -== - ----p--p-+ R0bcfirtMacAfih UTUTUTUT -= - . - 

I 
The modeling process described above cannot be used to provide direct inference to biological 

factors associated with prairie dog habitat suitability. Such inference would require the use of predictor 

variables that have a direct functional relationship with demographic parameters. Although true suitability 

models like thls have been developed for a few, well-studied "flagship" species, the current approach is 

rooted in the pragmatic realization that data do not exist to model habitat suitability in such detail for most 

species, and they probably never will. This research attempts to use modem statistical theory, GIS data, 

and computing technology to circumvent the need for the detailed habitat and demographic data in order to 

address the conservation problem at hand . 

Science is a system of shorthand that allows us to understand what is unknown based upon what is 

known. When it is most effective, science allows important characteristics of a system to be understood 

and predicted based upon the values of a few easily measured variables. Even though it may be necessary 

to explore a situation fairly thoroughly to extract this information, the goal of predictive science is never 

the exhaustive quantification of a particular scenario (the previously mentioned "glorification of the 

particular"), but the summarization of important relationships that may be generalized to other situations. 

We1 (1975) illustrates this in his attempt to model an idealized drawing of an elephant composed of 36 

points connected by lines. Although the drawing could be reproduced exactly using a model with 36 terms, 

the essential features can be approximated by fitting a least squares Fourier sine series function with 30 

terms. The author notes that the resulting approximation might not satisfy a third grade art teacher, but 

could carry a chemical engineer to an initial design. Science allows us to eliminate details not needed to 

describe the essential components of a system under study, in this case a rather rough picture of an 

elephant. 

These goals of science are well suited to modem species conservation, which must be based upon 

existing or easily acquired data if it is to be proactive. Funding for ecological research is usually available 



to study only a limited number of species; most of these are of direct value to humans or are already 

imperiled. This leads to a situation in which research resources are allocated using a triage paradigm. 

Important details critical to the survival of a given species are often not known until that species is on the 

brink of extinction, and funding is often not available for detailed study of ongoing conservation problems 

until they are in their final stages. These realities are conditioned not by science, but by human culture and 

politics. In the case of the prairie dog, the funding situation is due to the structure imposed by federal and 

state laws related to species conservation in the United States, but the basic issues are universal and driven 

by global economic considerations. They can be expected in any conservation situation in any area of the 

world. 

In this context it is expected by society that the scientific method will allow inference to the 

important characteristics of ecological systems. The integrative properties of science are needed to filter 

available data, deduce the essential relationships to be explored, and obtain a basic understanding with a 

minimum of additional study. This is the social reality within which conservation biology must operate if it 

is to be effective. As Lubchenco notes (1998), the role of science is slowly shifting from a focus on the 

refinement of resource extraction methods to one of evaluating the health of the environment and 

determining what can be done to safeguard or improve environmental health. These problems are infinitely 

more complex, and require that all available tools and data be incorporated in order to achieve the most 

complete understanding. The evolving fields of GIs, spatial statistics and landscape ecology provide a 

framework to explore existing or readily-developed data sources, and the exploration of these methods is 

mandatory to develop the theory and practice of a modem ecology that attempts to address the conservation 

problems that we as a species have created. 

This is not to say that direct inference through focused field research is not possible; in fact, the 

most valuable information yielded by the modeling process is often that which indicates what additional 

data should be gathered. The integration of data processing and analysis techniques with field data 

collected over large spatial and temporal scales, and the refinement of both using insights gained over time 

is the key to fhrther progress in ecology This study was an attempt to explore some of the analysis tools 

that have become available for this type of ecological research. 



SPATIAL MODELS AND PREDICTOR EFFECTIVENESS 

The most striklng differences between the spatial and non-spatial models is the way predictors that 

- - - -- -- - -- a r e  highly significant in 11011-spaha1 models becoi~le insignificant when spafial correlahon is modeled-- - - - 

directly. There are three main reasons why this could occur: 

1. The predictor is quantified at the wrong scale, and has too little information content to be 

effective. 

2. The manner in which this predictor is correlated over space matches almost perfectly with 

prairie dog habitat occupancy, the spatial model accounts for it well, and it is unnecessary to 

model it directly. 

3. The predictor becomes ineffective when spatial correlations in habitat occupancy are directly 

accounted for because the influence of marginal habitat is indirectly minimized. 

It is possible that some predictors would be more significant if they were quantified at an 

appropriate spatial scale. This first point is illustrated in Figure 33, where the unit of observation, a 30 m 

square pixel, is represented by the two green squares. When variation in a predictor occurs within a 

different "domain of scale" than the one within which it is sampled, correlations that are strong can 

disappear or change their relationship with the response. In general, when the scale of observation is too 

coarse, mechanistic relationships and the patterns they produce are averaged out of the data (Wiens 1989). 

The slope of the terrain and recommended livestock stocking intensity data used in this study provide 

examples of two ways input data can be too coarsely quantified. 

Slope has variation at the sub-pixel level that is not captured at the scale of observation. This 

interpretation is supported by the relatively high nugget variance in slope variograms from both study 

areas. Since input data were based upon a 30 m USGS DEM, spatial resolution is fundamentally limited to 

the 30 m spacing of sampling points used to create the DEM. The numbers in the first panel of Figure 33 

represent estimated % slope within each quarter of the unit of a pixel. The average value of slope for this 

pixel is only 2.2%, even though the lower left quarter of the pixel has an extreme value of slope for this 



area (15%). If this area was unoccupied due to extreme slope values, it is highly unlikely that this 

relationship would be captured in the model, since the average slope of this pixel is only 5.5%. Shortridge 

(2001) examined the effects of resampling DEM raster data to coarser resolutions, and found that average 

and maximum slope values consistently decrease regardless of interpolation method. The same is true of 

unmeasured variation between sample points in the original data. When extreme values within 30 m pixels 

are averaged away during data collection, a previously strong relationship between habitat occupancy and 

slope may be obscured. 

Some habitat data are only available at spatial scales much broader than the scale at which 

observations are quantified. Observed grazing intensity, for example, is defined by the number of cattle 

assigned to each pasture and the length of time they are allowed to remain. Since all pixels within a pasture 

share the same value for this variable, variation within the range of spatial covariance (represented by the 

circle around the pixel in Figure 33) is likely to be small. Unless grazing intensity between pastures has a 

very large effect on habitat occupancy, the predictor is unlikely to be significant. If this habitat quality 

attribute could be quantified at a finer spatial scale it might be more effective, but this would involve 

monitoring the activities of individual cattle or drastically reducing the size of pastures. Neither of these 

options were possible, and observed grazing intensity was not significantly associated with observed 

occupancy. NRCS recommended grazing intensity was also quantified at the pasture level in the Fort 

Pierre analysis and was insignificant, but when these data were replaced by the finer scale soil productivity 

data used to set these grazing levels, it had a strong relat iohp with habitat occupancy. 

Some predictors, on the other hand, might track the spatial pattern of model prediction error so 

closely that this variation is effectively captured by spatial correlation models. These predictors would 

become insignificant even though they could be biologically meaningful. The likelihood that global, 

isotropic spatial models would be capable of capturing spatial variability in a predictor to this extent is very 

low, but must be mentioned as a possibility. 

Accounting for spatial correlations in the response variable resulted in the removal of several 

predictor variables considered highly significant in non-spatial models. Ver Hoef et al. (2001) demonstrate 

how non-spatial linear regression models result in too many variables declared significant by comparing 

linear spatial and non-spatial models estimated using simulated data sets with positive spatial 



autocorrelat~on In a serles of Monte Carlo slmulatlons, the non-spatial model was allowed to have all the 

var~ables used to produce the dataset, whlle the spatial models were estimated w~th  an incomplete set of 

pred~ctors Results of the reduced spatial models were consistently superlor to the non-spatlal "true" 

-- A -modcl~~nd~cating that the spatla1 models also absorb the effects of unrnodeled variables to glve more valid--- -- 

and preclse predlctlon and estlmatlon. The authors followed this analysis with another that used actual 

field data, and found that mean-squared predict~on errors were also much smaller for spatla1 models even 

though they used fewer parameters. 

DIFFERENCES BETWEEN SPATIAL AND NON-SPATIAL MODEL OUTPUT 

What are the specific consequences of failing to incorporate spatial correlations into the modeling 

process? It was thought that the effect of modeling occupied marginal cells adjacent to hlghly suitable, 

occupied cells without adjusting for SAC would be to inflate the suitability of similar unoccupied cells and 

result in too many areas being declared suitable (commission errors). Comparing spatial and non-spatial 

model 7, this appears to be true. When the full non-spatial and reduced spatial models are compared, 

however, the primary consequence is an increase in the rate of false negative predictions. When spatial 

relationships are not included in the models, and the model that would have been arrived at through non- 

spatial methods is used, the ability to correctly distinguish suitable areas from those that are unsuitable is 

reduced. These over-saturated non-spatial models also predict unoccupied areas as unsuitable with greater 

frequency, but without long-term occupancy data, the accuracy of this type of prediction cannot be verified. 

Spatial models also allow weak or redundant predictors to be detected and removed. Comparing 

AIC values of the full non-spatial model to that of the non-spatial model with the same predictors as the 

, spatial model (Table 14), AIC values of the reduced model are much greater. The AIC statistic is 

calculated using 

( -2 * (log likelihood of the model I data )) - (2 * # parameters in the model) 



Although the second term in the equation penalizes models with too many parameters, the difference in 

AIC values between all models was large enough to be unaffected by thls subtraction; for large sample 

sizes, the parameter penalty has a negligible effect. The same ranking of models resulted when the first 

term in the above equation is the only one used. This means that even though the full model may have too 

many parameters, the reduced non-spatial model is superior to the full non-spatial model because has a 

better fit, regardless of the number of parameters. Recall that all terms in the full non-spatial model were 

highly significant, and since high p-values were the criteria used for eliminating variables, there would 

have been no way to arrive at the reduced model if only non-spatial methods were used. Even if one had 

no intention of using spatially adjusted regression for a final analysis, these methods produce a non-spatial 

model that is superior to the one arrived at through non-spatial methods. 

FUNCTIONAL RELATIONSHIPS BETWEEN PREDICTORS AND HABITAT SUITABILITY 

The predictors used to model habitat suitability vary in their functional relationship to prairie dog 

habitat occupancy, and this has implications for the utility of the final models. Ideally, the ecological 

gradients that define independent variables for a habitat suitability regression analysis should be quantified 

with very little error and have an explicit hnctional relationship with the response variable (Guisan and 

Zimmermann 2000). This is not always the case, of course. Predictor variables are measured along three 

types of ecological gradients: resource gradients, direct gradients, and indirect gradients (Austin 1980, 

Austin 1985, Austin et al. 1984, Austin and Smith 1989). Resource gradients are associated with the 

energy and matter consumed by an organism, direct gradients are environmental attributes that have 

physiological importance but are not consumed, and indirect gradients have no direct physiological 

relevance to an organism but indirectly represent a combination of resources and direct gradients (Guisan 

and Zimmermann 2000). 

Indirect predictors are often quite p o w e h l  in that they incorporate multiple potential influences 

on a species' distribution at once, but they have the disadvantage that their relationship with these 

influences may be area-specific. In a different area with different variables associated with habitat 

selection, the same value of an indirect variable may be indicative of a different combination of direct and 



resource gradients. This is known as the "law of relative site constancy" (Walter and Walter 1953), and its 

implications are that models that are parameterized using predictors estimated from direct and resource 

gradients can be more easily generalized between areas. Unfortunately, indirect resource gradient data are 

often the~most readily_ava~!able~for_suchanaly~e~.~Ifthepar~e~~use~d~t~o~mode1~a~~~e~ie~~re~~0n~e~t0~habitat~~~ _- 
~p - - - - -- - - - - -- 

variation, it is important that they represent the same direct and resource gradients between study areas if 

generality is desired. 

Using the classification described above, the predictors used in the models may be categorized as 

follows: 

Resource: AUMEAN, PROD, NDVI 

Direct: ALL SOIL VARIABLES, PPT, WATER 

Indirect: PRIVATE, SLOPE 

The indirect predictors shown above may incorporate different combinations of direct and resource 

gradients when used in different areas. Although slope would be expected to have the same biological 

significance between sites, there is more variation in this predictor in the Conata Basin study area. Both 

areas are relatively flat, but Conata Basin has badlands rock formations that introduce more heterogeneity 

in slopes across space and reduce the range at which individual pixel values for slope are strongly 

correlated. Badlands formations and the areas around them, often barren non-habitat, are associated with 

changes in slope in Conata Basin and may help create stronger relationships with soil, vegetation, and other 

gradients than slope at Fort Pierre. Slopes were more significant as a predictor of occupancy in Conata 

Basin than they were at Fort Pierre, even though they were not significant enough to be included in a final 

model. If a greater geographic extent were modeled in the Conata Basin study area, badlands formations 

with even more variation in slope would be included, and the variable might be more significant. 

The relationship between average annual precipitation and habitat occupancy illustrates a related 

problem with interpreting the biological significance of habitat suitability models. When trends in a 

predictor match trends in the response even though there may be little functional linkage between the two, 

false conclusions can be drawn that impair the generality and biological realism of results. Even when the 



models that result have better statistical performance, the loss of biological meaning is unacceptable and 

counterproductive to obtaining generality and insight. 

Distance-based variables representing resource and indirect gradients performed poorly in terms of 

explaining variation in the response variable. Distance to water was a surrogate for cattle grazing intensity, 

and was based on the assumption that grazing intensity is higher near water sources. Pastures in both study 

areas were likely too small for such effects to be detected, and the relationship with observed occupancy 

was insignificant. Distance to private land, on the other hand, was highly significant but not useful for 

correctly predicting habitat occupancy. This predictor was significant because it increased predictions of 

unsuitable areas around the edges of the grassland (some of which were unoccupied), but it degraded 

overall performance by essentially removing all specificity in the center of the study area as well as 

increasing the false negative error rate. It is possible that distance-based predictors are a poor choice in 

general when using a spatial model so strongly based on distance. In addition to the potential for 

introducing redundant information, the interpretation of these predictors can be ambiguous since they can 

indirectly represent multiple environmental attributes. 

All of the habitat attributes significant in the final spatial models measure gradients associated 

with the energy and matter consumed by prairie dogs (direct) or with environmental attributes that have 

physiological importance but are not consumed (resource). Predictors associated with direct gradients were 

most strongly related to habitat occupancy, and indicated that prairie dogs preferentially occupy areas of 

high soil productivity, and possibly increase soil productivity over time in occupied areas. 

BIOLOGICAL SIGNIFICANCE OF SPATIAL MODEL OUTPUT 

With the exception of distance to private land, most of the variables included in the final spatial 

models are related to soil or vegetation characteristics. This is logical for a species that lives inside 

burrows and subsists on the vegetation that surrounds them. The specific relationsbps between the various 

predictors and patterns of site occupancy provide additional information. Areas with lower mean clay 

content in the top soil horizon are associated with occupancy. This is likely a response to the fact that these 

areas are more fertile and produce preferred forage (grasses) in greater abundance. Similarly, estimated 



soil productivity is positively associated with occupancy, as is NDVI, an index of plant greenness and 

vigor. Although it is common wisdom that prairie dogs are attracted to areas that have poor fertility and 

further degrade the fertility of these areas over time, the results of this study demonstrate otherwise. Prairie 

dogs may be attracted to areas that-are-o~ergrazed a n d - h a v e - l o w - v e g e t a t i o n , = b u t = i n - t h e a r e a s s  

preferentially occupy sites that are relatively fertile. There is evidence that soil fertility increases with 

prairie dog presence as well; vegetation growing in areas occupied by prairie dogs consistently has higher 

nitrogen per unit of above-ground net primary production (Whicker and Detling 1988). This makes it 

impossible to separate selection of fertile areas from fertility effects through continuing occupancy, and this 

caveat also applies to NDVI. The significance of estimated soil productivity, however, supports the idea 

that prairie dogs may have the ability to identify areas that are intrinsically fertile and occupy these areas 

preferentially. 

High mean clay content of all soil horizons may be related to the climax vegetation community 

associated with different soil types, but characteristics of the soil as a burrow material are probably also 

important. Burrows in areas with too low of an overall clay content (sandy) have poor structural integrity, 

and are avoided, whereas areas with silty loam clay soils are thought to have the best burrow durability 

(Clippinger 1989). This predictor had a positive relationship with habitat occupancy, and though it was 

only marginally significant in the final spatial model (p = 0.1734), its contribution to decreasing AIC 

justified keeping it in the model. The Conata Basin study area is dissected with badlands rock formations 

and the barren soils that accompany them. These soils do not support much vegetation, are likely hard to 

excavate, and have a lower clay content than the more productive areas that surround them. Given this 

context, it is not surprising that this variable was significant. It is uncertain whether it would be useful in 

other areas, however. 

The significance of distance to private land as a predictor of habitat suitability was most likely 

due to the poisoning that has occurred on the grasslands in the past. These control actions occurred 

primarily in response to landowner complaints, and examination of records shows that most poisoning 

occurred adjacent to boundaries with private land. Increased shooting pressure may be associated with 

proximity to private land in some areas, but shooting activity would need to be fairly intense to have a 

significant effect on colony area. It is also possible that proximity to non-habitat, privately-owned areas 



where prairie dogs are actively exterminated, has negative effects on colonies because they are not a source 

of immigrating individuals and result in mortality for those who disperse into it. This prevents the 

immigration and emigration between colonies thought to be necessary to maintain genetic variability and 

enhance metapopulation persistence of the species (Gilpin, 1999). These metapopulation effects may be 

significant, but are impossible to evaluate without extensive study, and do not appear to be supported by the 

observed pattern of habitat occupancy. 

Since poisoning and shooting are no longer permitted in either study area, distances from private 

land are now of questionable relevance to estimates of habitat suitability. Long term data are not sufficient 

to understand the extent of historical influences on current occupancy patterns. It is not known, for 

example, how long it would take for a large area to be reoccupied if all prairie dogs were completely 

removed. When occupied areas still exist nearby, prairie dog populations rebound within a few years after 

poisoning. In Conata Basin, for example, colonies require treatment every three years to stop expansion 

(Schenbeck 1985, Uresk and Schenbeck 1987). When colonies are only partially treated, population 

recovery can occur within two years (Knowles 1982). It is reasonable to assume that they respond even 

more quickly after shooting activities stop, since shooting has the effect of creating small vacancies that are 

quickly filled rather than removing prairie dogs from large areas (Gilpin 1999). Even though past control 

activities have had some influence on current distribution, this relationship would not be expected to 

continue for long periods after control is discontinued. 

The effect of removing the distance to private land predictor from the models was to increase 

predictions of unsuitable habitat within the study area, decrease error in predictions of suitable habitat at the 

margins of the study area, and produce more general models not tied to the specific history of the area 

modeled. All mode1 performance statistics increased with the removal of this predictor, and comparisons 

of the spatial predictions of models that included distance to private land with those that did not indicated 

that a slight improvement in specificity at the edges of the study area (which may or may not be accurate) 

was the only positive effect on prediction. 

The spatial component of the models also has biological implications. The criterion for defining a 

"complex" of prairie dog towns in most current management plans is that colonies should be separated by 

straight line distances of no more than 5 km to be included in a complex. This figure is loosely based upon 



the estimated maximum dispersal ability of the species. Radiotelemetry of dispersing prairie dogs, 

however, has given an average straight-line dispersal distance of only 2.4 km (Garrett and Franklin 1988). 

Observed mortality of dispersing animals in this study was 56%, significantly higher than that of prairie 

dogs that did not disperse (10%). Dispersers took a meandering route, usually following drainages and 
- --p---- -- -- -- - - -- -- -- - - -- - - ---- -- 

~wales. Genetic research (Roach, 1999) has shown that the genetic distance between colonies is related to 

distance along these dispersal corridors, but not to straight line distance between colonies. Given that 

drainages are important for dispersal success and population interchange, straight line distance between 

colonies is not adequate as a measure of connectivity between colonies. Creating distance matrices that 

quantify distances between sites on the basis of drainage distance is not a trivial task, however, and must be 

done for each area an analysis is applied to. The estimated range of spatial correlation was consistent 

around 725 m for all spatial analyses and between data sets, and is straightforward to quantify using 

variogram analysis (refining estimates requires MixedIGlirnmix analysis). This measure of correlation 

could be used to provide a more quantitative and site specific measure of connectivity than 5 km rule 

currently used, which may not be adequate to ensure species persistence. 



CONCLUSION 

This research describes an analysis framework that allows reliable quantification of relationships 

between spatially correlated occupancy data and a set of habitat covariates. Results show that it is possible 

to predict prairie dog habitat occupancy more precisely and accurately than before using a set of four 

predictors from two commonly available data sources, a time series of habitat occupancy data, and spatially 

adjusted regression analysis. The analyses in this study used data similar to that in previous modeling 

work, but quantified observed habitat use more precisely by modeling spatially correlated prediction error 

to remove it from the estimation process for a main effects model. 

Although this type of analysis is computationally intensive, it is conceptually simple and based on 

refinements of standard statistical theory. The analytical techniques used here have existed for years, but 

the software necessary to implement them and the hardware that makes it practical at the landscape scale 

have only become available recently. The models explored in this thesis describe spatial variation in a very 

rudimentary way, but represent one of the only analysis frameworks that is currently feasible at the 

landscape level. 

One of the most exciting possibilities of t h s  model structure is the potential to extend the analysis 

to the state or regional level by randomly sampling spatial blocks from a regional population of blocks. 

Spatial blocks in this study formed a contiguous mass of habitat, but since they are used as repeated 

measures to build the model, spatial blocks are assumed to be statistically independent. If selected 

randoky from a larger area, blocks could be used to create general models to define habitat qualitylhabitat 

occupancy relationships that could be applied to extensive areas. Unlike other spatial models (e.g. spatial 

autoregressive and autologistic models), a valid spatially adjusted regression model may be applied to an 

unmodeled area without the need to examine or analyze location-specific data. Application of spatially 

adjusted models is as straightforward as the application of non-spatial logistic models because the 

adjustment is already built into the equation. 

The analyses used commonly available statistical software and readily available habitat data. 

Similar data exist to model many other species, and the analysis is relatively flexible in terms of 

incorporating different data types (presencelabsence or count data) and different types of models for 



positive spatial autocorrelation (spherical, exponential, gaussian, linear, linear log, and power). These tools 

are available for use in further analyses of prairie doghabitat relationships as well as those of other species. 

A major advantage of these models is the ability to exclude predictors that have spurious 

- - significance~in.non,spatial~analyses,-yetdbecome=insignifi~ant-when=spatial=correlations=in=the=respoi~se=-~ - =  

variable are accounted for. In the above analysis, over-parameterized, non-spatial models predicted that too 

many occupied areas were unsuitable. Spatial models with fewer parameters had a false negative error rate 

about one third that of the non-spatial full model, yet had similar statistics for correct predictions. 

Incorporation of spatial correlations thus allowed models to be simplified and the most important (and only 

verifiable) source of error to be reduced. 

Using a non-spatial model with the same parameters as the spatial model gave accuracy statistics 

that are comparable with the spatial model, but with a far lower level of specificity than either of the other 

two models. In other words, using the same predictors without the spatial adjustment results in the same 

proportion of correct and incorrect predictions, but since a smaller area is being declared unsuitable, these 

standards are easier to meet, and the model is unable to remove many areas from consideration. This is the 

result anticipated in the introduction: a non-spatial model that is based upon the equal contribution of 

marginal and optimal quality habitat would be expected to have a reduced ability to idenfity unsuitable 

areas compared to a spatial model. 

Using readily available data, the spatial models were able to quantify relationships between habitat 

quality and habitat occupancy that could not have been detected using other methods. The components 

necessary for application of this framework to a range-wide habitat suitability analysis of the Black-tailed 

prairie dog already exist, as they do for many other species. Ecology and science in general are at a stage 

where technology and theory have provided a realm of possibilities that remain to be investigated, and 
I 

many tools that could be used to understand ecological relationships have not been tested using field data. 

Spatially adjusted regression models are among these tools, and represent a way to filter and simplify a 

complex reality, define essential relationships, and guide further research into species habitat relationships 

for prairie dogs and many other animals. 
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Table 1. Predictors used in the USFS Prairie Dog Habitat Capability Model 
I 

Unsuitable 
=badlands,=ver+ - 

sandy soils 
coniferous and 
deciduous 
ungrazed 

over 30% 
waterlwetland 

Suitable 
dense  clays,-sandy and== 
silty 
sagebrush and greasewood 

secondary rangeland 
(no water developments) 
10% - 30% 
upland 

=Range site-- 

Vegetation 

Grazing 

Slope 
Watedwetland 

Preferred 
-moderately-clayey silt- 
loams 
grassland 

primary rangeland 
(water developments) 
< 10% 
upland 



Table 2. Comparison of the Proctor et al. model predictions with observed data 

Category % of % of % 
area wl total total 
P.D. P.D. area 

1. Slope 4-25%, all veg. Types except 0.8 14.8 82.2 
low density grassland and barren sites 
2. Slope 0-4%, veg. as above, soil 10.7 25.4 10.9 
texture clay and loam 
3. Slope 0-4%, veg. as above, soil 26.6 21.7 3.7 
texture clay/loam 
4. Slope 4-25%, low density 10.2 1.7 0.7 
grasslands and barren sites 
5. Slope 0-4%, low density grasslands 67.9 36.5 2.5 
and barren sites 
Total 100 100 100 



Table 3. Candidate predictors used in initial Fort Pierre models 

Predictor 
Slope 

Mean %clay of top soil 
horizon in map unit 

Mean % clay of all soil 
horizons in map unit 

High mean % clay of all 
soil layers in map unit 

Low mean % clay of all 
soil layers in map unit 
Average annual 
precipitation 

Distance to private land 

Distance to water within a 
pasture 

Proportion of years 
poisoned 

NRCS stocking level + 
pasture area 
Actual use stocking level 
mean 
Actual use stocking level 
S.D. 
Mean %clayof top horizon 

* 
Slope 

Mean % clay of all 
horizons 

* 
Slope 

H ~ g h  mean % clay of all 
horizons 

* 
Slope 

Proportion of years 
poisoned 

* 
D~stance to private land 

NRCS stocking level 
* 

Actual use stocking level 

Data Source & Processing 
USGS DEM converted to slope grid 
using Arc Tools 
Map units in USFS soil survey layer 
linked with NRCS SSURGO soil 
database 

Data from surrounding weather 
stations used to internolate values 
across grassland 
Land Ownership layer & ArcInfo AML 

Water source coverages & Arc Info 
AML 

Paper maps and tables summarizing 
poisoning efforts transcribed and 
appended to occupancy coverages. 

Tabular data transcribed and appended 
to allotment coverages 
Tabular data transcribed and appended 
to pastures in allotment coverages 
Tabular data transcribed and appended 
to pastures in allotment coverages 
Manipulation of data done within SAS 

Manipulation of data done within SAS 

Manipulation of data done within SAS 

Manipulation of data done within SAS 

Manipulation of data done within SAS 

Potential Biological Rationale 
Small slopes selected by species 

top horizons with low clay content 
have lower veg density, are less prone 
to erosion, and may have superior 
structural char. 
soils with lower mean clay content 
in all horizons may have superior 
structural char. 
if the highest mean clay content in a 
mapunit is above some threshold, it is 
unsuitable 
if the lowest mean clay content is not 
above some threshold, it is unsuitable 
More arid areas are selected by the 
species due to their decreased 
productivity 
Areas closer to private land are more 
likely to be poisoned or shot at. 
Outside of some trampling radius, 
increased grazing pressure improves 
HS within some distance of water 
Poisoning events that were known to 
occur likely affected occupancy 
probability for all pixels within some 
range of the poisoning 
species favors less productive areas 

Species prefers areas that are intensely 
grazed 
Species prefers areas with high 
stocking level variance. 
Clay accumulates in closed 
depressions and other areas of low 
slope 
Clay accumulates in closed 
depressions and other areas of low 
slope 

Clay accumulates in closed 
depressions and other areas of low 
slope 

Poisoning is more likely for towns 
adjacent to private land. 

Actual use of grazing lands is 
influcnccd by the recommendations of 
the NRCS 



Table 4. Description of the Glimmix estimation process 

1 )  
a) Estimate main effects model using entire dataset. 
b) Make predictions based on the initial main effects model. 
c) Use user-defined parameters to remove spatially correlated errors from the error 

surface, leaving model-based error, error due to unmodeled variation, and 
spatially generated error not accounted for by the initial spatial model. 

d) Transfer "pseudodata' from 1 c to next iteration. 
2) 

a) Estimate main effects model using same data as in la, but minimize error based. 
on error surface from lc.  

b) Make predictions based on the revised main effects model. 
c) Use the errors from 2b to estimate a new spatial correlation model. 
d) Remove spatially correlated errors from error surface using the revised spatial 

model, leaving model-based error, error due to unmodeled variation, and spatially 
generated error not accounted for by the initial spatial model. 

e) Transfer pseudodata from 2d to the next iteration. 
3) Repeat process until convergence. 



Table 5. Output from initial Fort Pierre multiple linear regression analysis 
I 

Root MSE 0 21741 R-Square 0 5492 
Dependent Mean 0.24469 Adj R-Sq 0.5490 

- 
- - - -- --Goeff=Var 88.8491 7 -- - --- - - - - -- -- -- - 

Parameter Standard 
Variable DF Estimate Error t Value Pr > It1 

INTERCEPT 
AUMN 
AUS 
CLAYMEAN 
TOPCLAYM 
CLAYMH 
CLAYML 
PPOISON 
PRECIP 
NRCSM 
P l u m  
SLOPES 
WATD 
SLOPE*TCM 
SLOPE*CMH 
SLOPE*CML 
PPOlS*PRIVD 
NRCS *AUMN 



Table 6. Comparison of initial non-spatial logistic regression models 

MODEL WITH SIGNIFICANT INTERACTIONS 

Standard 
Parameter DF Estimate Error Chi-square Pr > ChiSq 

Intercept 
AUMN 
CLAYMEAN 
TOPCLAYM 
CLAYMH 
CLAYML 
PRECIP 
NRCSM 
PRIVD 
SLOPES 
CLAYMEAN*SLOPES 
TOPCLAYM*SLOPES 
CLAYMH*SLOPES 
AUMN*NRCSM 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 86.5 Somers' D 0.73 1 
Percent Discordant 13.4 Gamma 0.732 
Percent Tied 0.1 Tau-a 0.364 
Pairs 384843536 c 0.865 

MAIN EFFECTS MODEL 

Standard 
Parameter DF Estimate Error Chi-square Pr > ChiSq 

Intercept 
AUMN 
CLAYMEAN 
TOPCLAYM 
CLAYMH 
CLAYML 
PRECIP 
NRCSM 
PRIVD 
SLOPES 
WATD 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 86.6 Somers' D 0.734 
Percent Discordant 13.2 Gamma 0.735 
Percent Tied 0.1 Tau-a 0.365 
Pairs 89389077 c 0.867 



Table 7. Model fit diagnostics for main effects non-spatial logistic model 

Testing Global Null Hypothesis: BETA=O 

Test Chi-square DF Pr > ChiSq 

Likelihood Ratio 18750.8948 10 <.0001 
Score 15778.2372 10 <.0001 
Wald 10880.0484 10 <.0001 

Odds Ratio Estimates 

Point 95% Wald 
Effect Estimate Confidence Limits 

AUMN 
CLAYMEAN 
TOPCLAYM 
CLAYMH 
CLAYML 
PRECIP 
NRCSM 
PRIVD 
SLOPES 
WATD 



- - 

Table 8. Classification Table for main effects non-spatial logistic model 

Correct Incorrect Percentages -- Prob--NO~--------- NO~=- _Semi--Spec~- False - False 
- 

Level Event Event Event Event Correct tivity ficity POS NEG 



Table 9. Comparison of AIC values for final Fort Pierre Models 

Model 

Non-spatial full 
Non-spatial reduced 
Spatial reduced 

# Parm. AIC 



Table 10. Comparison of accuracy assessment statistics for Fort Pierre final models 
I 

Model Cutpoint Sensitivity Specificity False Pos. False Neg. 
I 

--- -- -- -- - --.=a= --- -- - - -- - - - 

Non-spatial full 0.300 95.5 27.9 44.5 13.3 
Non-spatial reduced 0.280 95.0 29.4 44.1 

- - ==-I 
13.8 

Spatial reduced 0.399 95.10 15.80 84.20 4.90 I 



Table 11. Candidate predictors used in initial Conata Basin spatial models 

Predictor Non- 
spat. 

Actual use stocking mean x 
Low mean clay of all horizons x 
Average mean clay of all horizons x 
High mean clay of all horizons x 
Low mean clay of top soil horizon x 
Average mean clay of top soil horizon x 
High mean clay of top soil horizon x 
Estimated average annual precipitation x 
Estimated productivity/mapunit area x 
Distance to private land x 
Slope x 
Distance to water in pasture x 
Estimated % sand of top soil horizon x 
Estimated % silt of top soil horizon x 
Estimated % clay of top soil horizon x 
Mean NDVI x 

Spat. 
1 

Spat. Spat. Spat. 
2 3 4 



Table 12. AIC statistics for initial Conata Basin spatial models 
I 

# parms 900 meter spatial block 
-4 - -- -- -pp 

1200 meter spatial block 
- _ 

I 
AIC Wr AIC W r 

Model 1 11 
-= -1- 

404992 0.0000000000 405336 0.0000000000 

Model 2 9 404758 0.0000000000 405 120 0.0000000000 

Model 3 8 399255 0.9999999995 -- -- 
Model 4 7 399298 0.0000000004 -- -- 

I 



- 

Table 13. Comparison of full and reduced non-spatial models with spatial model 3 

Full non-spatial model 
Non-spatial model 3 
Spatial model 3 

# parms AIC - 



Table 14. Maximum likelihood estimates for spatial model 3 

Standard 

-- - 

Effect - Estimate Error - DF__t_V_alue--Pr-xltl- - --- - - - -- 

Intercept - 1.4460 0.1697 276 -8.52 <.0001 
MCH 0.2075 0.1453 19E4 1.43 0.1532 
TCM -0.3 160 0.1480 19E4 -2.14 0.0327 
PROD 0.1384 0.02 13 19E4 6.49 <.0001 
PRIVATE 0.2339 0.0669 19E4 3.50 0.0005 
NDVI 1 0.7491 0.0998 19E4 7.51 <.000l 



Table 15. Comparison of accuracy assessment statistics for final models 

Sensitivity Specificity False + False - 
Full non-spatial model 95.0 29.4 44.1 13.8 

Non-spatial model 7 95.6 21.8 78.2 4.4 

Spatial model 7 95.2 25.2 74.8 4.8 



Table 16. Regression coefficients and standard errors of the final spatial model 

Standard 
- - Effect - E s t i m a t e  Error---DF---$-Value- - -h>-ltl- - - 

Intercept -1.1032 0.1388 276 -7.95 
MCH 0.1954 0.1435 19E4 1.36 
TCM -0.3059 0.1461 19E4 -2.09 
PROD 0.1355 0.02106 19E4 6.44 
NDVI 1 0.7350 0.09862 19E4 7.45 



Figure 1. Clippinger's Habitat Suitability Index Functions 
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Figure 2. Comparison of Habitat Capability Model output and observed 
occupancy for Fort Pierre National Grassland 
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Figure 3. Comparison of Habitat Capability Model output and observed 
occupancy in the northeast corner of Fort Pierre National Grassland 
(close-up of Figure 2). 
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Figure 4. Habitat capability model performance on a portion of the Conata Basin study area 
I 
I 



Figure 5. Spatial autocorrelation introduces error when non-spatial methods are used to model binary habitat 
occupancy as a function of habitat quality 
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Figure 6. Effects of spatial autocorrelation on estimates of regression coefficients 
and standard errors 
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Figure 7. Pastures on public land within Fort Pierre National Grassland 
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Figure 9. Flowchart of Analysis Process for Fort Pierre 
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is there positive spatial 
autocorrelation +YES, so it is 
likely that a spatially adjusted 
model will perform better 

STOP 



Figure 10. Variogram of residuals from Fort Pierre non-spatial linear model 
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Figure 11. Data preparation using the smaller size spatial block (left panel) results in a block with less 
than 20 observations (outlined in blue) that must be removed, and this creates differences 
between data sets that prevent comparison of models using AIC. I' 
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Figure 12. Error from the multiple linear regression model and its relationship to 
proportional occupancy 



Figure 13. Mean actual use stocking levels vs. proportional occupancy 



Figure 14. SD of actual use stocking levels vs. proportional occupancy 



Figure 15. Mean clay content of all soil horizons vs. proportional occupancy 
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Figure 16. High mean clay content of all soil horizons vs. proportional occupancy 



Figure 17. Low mean clay content of all soil horizons vs. proportional occupancy 
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Figure 18. Mean clay content of top soil horizon vs. proportional occupancy 



Figure 19. NRCS recommended stocking level vs. proportional occupancy 



Figure 20. Poisoning probability vs. proportional occupancy 
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Figure 21. Mean annual precipitation vs. proportional occupancy 



Figure 22. Distance to private land vs. proportional occupancy 
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Figure 23. Slopes vs. proportional occupancy 



Figure 24. Distance to water vs. proportional occupancy 





Figure 26. Resubstitution results for full non-spatial model 



Figure 27. Resubstitution predictions for spatial model 3 



Figure 28. Resubstitution predictions for spatial model 5 



i ~ 
~ 

Figure 29. Resubstitution predictions for non-spatial model 7 I 



Figure 30. Resubstitution predictions for spatial model 7 
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Figure 31. Predictions of spatial model 7 compared to maximum recorded habitat occupancy in the study area 



Figure 32. Predictions of spatial model 7 compared to maximum recorded habitat occupancy in an adjacent unmodeled area 



Figure 33. Habitat predictors may be ineffective if the unit of observation (green 
square) has significant variation within it, as with slope, or if the predictor is 
quantified at such a coarse scale that it varies little between observations across 
space, as with grazing intensity 
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Appendix I. Macro used to calculate distance to water 
.................................................................... 
/* Program: zonleucd.aml 
/* Purpose: Find zonal euclidean distance from points and polygons 
/* Date: November 2000 
/* Author: Jon Beiak 
.................................................................... 
/*CREATE VARIABLES USED LATER TO CREATE FILE NAMES 
&s count = 1 
&s pasture = past 
/*ASSIGNS PASTNAME.TXT TO THE VARIABLE FILE-A 
/*PASTNAME.TXT LISTS POLYGONS TO BE USED AS ZONES 
/*LISTS FIELDS AS THEY APPEAR IN .PAT 
/*1 LINE PER ENTRY DOUBLESPACED 
/*SORT ON NORTHING OR EASTING TO SIMPLIFY MOSAIC PROCESS 
&s file-a = [open pastname.txt status -read] 
&do &until %readstatus% = 102 

/*READ THE CURRENT LINE FROM FILE-A AND ASSIGN IT TO CUR-PAST 
&s curqast = [read %file-a% readstatus] 
/*TYPE THE NAME OF THE CURRENT PASTURE 
&type %cur_past% 
/*RESELECT THAT POLYGON AND USE IT TO CREATE A COVERAGE 
reselect Pastures cunpast poly 
reselect Pastures# = %curqast% - 
N 
N 
/*GIVE THE COVERAGE POLYGON TOPOLOGY 
build currpast poly 
grid 
setwindow ftpr-slope 
setcell ftpr-slope 
/*THE WATRSRC GRID IS THE UNION OF ALL POINT AND POLY SOURCES 
/*SOURCES HAVE NON-ZERO VALUES, ALL OTHER AREAS ARE NODATA 
/*CELL SIZE AND EXTENT ARE THE SAME AS DESIRED IN FINAL GRID 
/*CLIP TO RESTRICT DISTANCE ANALYSIS TO WITHIN-PASTURE SOURCES 
gridclip watrsrc curnvatr cover currpast 
/*PERFORM DISTANCE ANALYSIS 
cuneucd = eucdistance(cumvatr, #, #, 1000000, #) 
/*CLIP TO EXTENT OF CURRENT PASTURE 
/*OUTPUT FILES NAMED USING %PASTURE% COMBINED WITH %COUNT% 
gridclip curreucd %pasture%%count% cover currpast 
quit 
I* KILL INTERMEDIATE COVERAGES 
kill currpast all 
kill currwatr all 
kill curreucd all 
&s count = %count% + 1 
/*READ A BLANK LINE FROM THE FILE TO CHECK FOR EOF 
&s cover = [read %file-a% readstatus] 
&end 

I* USING THE MOSAIC COMMAND AT THE GRID PROMPT, CUT AND PASTE 
/* PASTURE NAMES FROM PASTNAME.TXT INTO THE APPROPRIATE EXPRESSION 


